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Abstract

This is a note for ENGG2780 - Statistics for Engineers.
Contents are adapted from the lecture notes of ENGG2780, prepared by Sinno Jialin Pan and Andrej
Bogdanov, as well as some online resources.
This note is intended solely as a study aid. While I have done my best to ensure the accuracy of the
content, I do not take responsibility for any errors or inaccuracies that may be present. Please use the
material thoughtfully and at your own discretion.
If you believe any part of this content infringes on copyright, feel free to contact me, and I will address
it promptly.
Mistakes might be found. So please feel free to point out any mistakes.
This course heavily relies on prior knowledge of probability (which you can refer to in the notes I wrote for
ENGG2760). Therefore, before proceeding with this course, make sure you understand the foundation,
as I will take them for granted.

https://www.cse.cuhk.edu.hk/~sinnopan/
https://andrejb.net
https://andrejb.net
https://www.ryanc.wtf/files/ENGG2760.pdf
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Chapter 1

Bayesian Statistic

1.1 Statistic v.s. Probability

Statistics focuses on real-life applications where the underlying distribution is often unknown. To address
this, we use statistical inference to analyze observed data and estimate the unknown distribution.
Rather than finding the exact distribution, we approximate it using models such as parametric (e.g.,
normal, exponential) or non-parametric approaches. Once a suitable model is chosen, probability laws
help us make predictions and draw conclusions, though these approximations involve assumptions and
uncertainties.

Now, let’s move on to our first topic in statistics:

1.2 Bayesian Statistics

1.2.1 Introduction

In the probability course, we learned Bayes’ Rule ENGG2760: Theorem 3.2.1, which helps us calculate
conditional probabilities and, at times, update our beliefs based on new evidence.

And it turns out that one of the statistical inferences we use is based on Bayes’ rule, namely Bayesian
statistical inference. In Bayesian statistical inference, we: (1) assign prior probabilities to parameters;
(2) observe data; and (3) update probabilities via Bayes’ rule:

fΘ|X(θ|x)︸ ︷︷ ︸
Posterior

=

Prior︷ ︸︸ ︷
fΘ(θ)

Observation︷ ︸︸ ︷
fX|Θ(x|θ)
fX(x)

Here we have both the posterior and prior probabilities of the parameters θ and observations x.

We have four variations of the Bayes’ rule shown above.

Condition Bayes’ rule

Θ discrete, X discrete pΘ|X(θ|x) = pΘ(θ)pX|Θ(x|θ)∑
θ′ pΘ(θ′)pX|Θ(x|θ′)

Θ discrete, X continuous pΘ|X(θ|x) = pΘ(θ)fX|Θ(x|θ)∑
θ′ pΘ(θ′)fX|Θ(x|θ′)

Θ continuous, X discrete fΘ|X(θ|x) = fΘ(θ)pX|Θ(x|θ)∫
fΘ(θ′)pX|Θ(x|θ′)

Θ continuous, X continuous fΘ|X(θ|x) = fΘ(θ)fX|Θ(x|θ)∫
fΘ(θ′)fX|Θ(x|θ′)

2

https://ryanc.wtf/files/ENGG2760.pdf#page=14


We can use Z(x) to denote the denominator for both discrete and continuous cases. It depends only on
the observed data x.

Example (Probability Review). We flip a coin. How likely is it to get 2 heads in 3 coin flips if the
probability of heads is p, where p could be 0.5, 0.7, and 1?

Also, use the Central Limit Theorem to estimate the probability of at least 200 heads in 300 coin
flips.

Solution:
P(H = 2) =

(
3

2

)
p2(1− p)

p = 0.5 : P(H = 2) =
(
3
2

)
× 0.52 × 0.5 = 0.375

p = 0.7 : P(H = 2) =
(
3
2

)
× 0.72 × 0.3 = 0.441

p = 1 : P(H = 2) =
(
3
2

)
× 12 × 0 = 0

For the probability of at least 200 heads in 300 coin-flips,

H ∼ Binomial(300, p), µ = 300p, σ =
√

300p(1− p)

p = 0.5 : µ = 150, σ = 8.66

P(H ≥ 200) = P(
H − 150

8.66
≥ 200− 150

8.66
)

= P(z ≥ 5.77)

≈ 0

p = 0.7 : µ = 210, σ = 7.94

P(H ≥ 200) = P(
H − 210

7.94
≥ 200− 210

7.94
)

= P(z ≥ −1.26)

= Φ(1.26)

= 0.896

Above shows that we have a lower probability for p = 0.5, which means p = 0.7 is a better assumption.
This is also quite intuitive, since with 200 heads in 300 coin flips, there is a certain probability that the
coin is biased.

Again, we flip a coin three times and get two heads. You are told that there are three types of coins
with different priors, but you don’t know which coin you are flipping. It is obvious that the first coin
flip will affect your belief (prior) about which coin you have. For example, if you see 100 heads out of
100 flips, you might strongly believe that both sides of the coin are heads. But to what extent does each
flip influence your belief? This brings us to the problem of statistics.

Example. A coin can be one of three types:

1. A fair coin θ = 1 with one head and one tail – 90%

2. A coin θ = 2 with both sides as heads – 5%

3. A coin θ = 3 with both sides as tails – 5%

Now, you flip a head without knowing which coin you have. How should you update your belief
(priors)?

Solution:

P(θ = 1|H1) =
P(H1|θ = 1)P(θ = 1)

Z(H1)
=

0.5× 0.9

Z(H1)
=

0.45

Z(H1)

P(θ = 2|H1) =
P(H1|θ = 2)P(θ = 2)

Z(H1)
=

1× 0.05

Z(H1)
=

0.05

Z(H1)

P(θ = 3|H1) = 0
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Then we have P(H1) = Z(H1) = 0.45 + 0.05 + 0 = 0.5

P(θ = 1|H1) =
0.45

Z(H1)
= 0.9 P(θ = 1|H1) =

0.05

Z(H1)
= 0.1 P(θ = 1|H1) = 0

From this, we can update our belief, which we can then use to further readjust our belief if the
second flip also results in a head.

P(θ = 1|H2H1) =
P(H2|θ = 1, H1)P(θ = 1|H1)

Z(H2, H1)
=

0.5× 0.9

Z(H2, H1)
=

0.45

Z(H2, H1)

P(θ = 2|H2H1) =
P(H2|θ = 2, H1)P(θ = 2|H1)

Z(H2, H1)
=

1× 0.1

Z(H2, H1)
=

0.1

Z(H2, H1)

P(θ = 3|H2H1) = 0

Then we have P(H2H1) = Z(H2H1) = 0.45 + 0.01 + 0 = 0.55

P(θ = 1|H2H1) =
0.45

Z(H2H1)
= 0.82 P(θ = 1|H2H1) =

0.1

Z(H2H1)
= 0.18 P(θ = 1|H2H1) = 0

1.2.2 Bayesian Statistical Inference

For Bayesian statistics, we have only one formula: Bayes’s rule:

fΘ|X(θ|x)︸ ︷︷ ︸
posterior

∝ fX|Θ(x|θ)︸ ︷︷ ︸
likelihood

fΘ(θ)︸ ︷︷ ︸
prior

We have some prior knowledge, and after observing something, we can use the prior (assumption) and
likelihood to update our belief, which gives us the posterior. This posterior can later serve as the prior for
another observation, allowing us to continuously update our belief throughout the observation process.

Example. Romeo is waiting for Juliet on their first date. He wants to estimate how long he will
have to wait for her. Given that Romeo has some prior dating experience, he already has some
prior knowledge about how late girls tend to be.

Girl A - X ∼ Uniform(0, 0.3);

Girl B - X ∼ Uniform(0, 0.8);

Girl C - X ∼ Uniform(0, 0.6),

where the uniform random variable shows the range of lateness. For example, for girl A, she will be
late between the dating time and the dating time plus 0.3 hours. Then, how could you use Bayesian
statistics to estimate the waiting time for Romeo’s new girlfriend?

Solution: Here we can set up the uniform random variable Uniform(0,Θ), where Θ depends on
the girls. Then what we need to find is the θ for Juliet. We can then have

fX|Θ(x|θ) =


1

θ
, if 0 ≤ x ≤ θ;

0, otherwise.

In Romeo’s model, θ is also a uniform random variable θ ∼ Uniform(0, 1), where X ∼ Uniform(0,Θ).
It means that Romeo has a prior belief that all the girls would be late for at most 1 hour, and the
likelihood of Juliet being late is described by X, which states that she could be θ hour late. Given
that on their first date, Juliet arrived 1

2 hours late, we have

fΘ|X(θ|1
2
) ∝ fΘ(θ)fX|Θ(

1

2
|θ) = 1

θ

Here we have the prior fΘ(θ) = 1 if 0 ≤ θ ≤ 1, and the likelihood fX|Θ(
1
2 |θ) = 1

θ if 1
2 ≤ θ ≤ 1.

Keep in mind that the prior comes from Romeo’s model, where he has never dated a girl who is
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late for more than 1 hour, and it may not be valid if θ > 1, which shows the limitation of Bayesian
statistics. Also, the observation (likelihood) shows the probability of Juliet arriving precisely at (or
within a very small interval around) time plus 0.5. Therefore, we have θ ≥ 1

2 . Otherwise, if θ < 1
2 ,

it is not possible for Juliet to arrive 1
2 hour late, since it is not included in Romeo’s belief.

For the integral to be equal to 1, we need to find the constant term. This can be found using
calculus: ∫ 1

1
2

1

θ
dθ = ln θ

∣∣∣1
1
2

= ln 2 =⇒ fΘ|X(θ|1
2
) =

1

θ ln 2

Here we have θ < 1
2 = 0 because from the data,

we know that θ ≥ 1
2 , which means the lateness

parameter is at least 1
2 , so it is not possible for

Juliet to arrive between the dating time and dat-
ing time plus 0.5. We also have θ > 1 = 0 because
from Romeo’s prior knowledge, he knows that a
girl would not be later than 1 hour. -0.25 0 0.25 0.5 0.75 1 1.25

0.5

1

1.5

2

2.5

On their second date, Juliet arrived 1
4 hours late. We then need to readjust the prior based on the

previous model to find the new posterior.

fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
∝ fΘ|X1

(
θ
∣∣∣1
2

)
fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
Here, since X1 and X2 are independent, we can discard X1 in the calculation.

fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
∝ fΘ|X1

(
θ
∣∣∣1
2

)
fX2|Θ

(
1

4

∣∣∣θ) =
1

θ ln 2
× 1

θ
=

1

θ2 ln (2)
∝ 1

θ2

The same as above, we have fX2|Θ(
1
4 |θ) = 1

θ for θ ≥ 1
4 since it is not possible for the lateness to be

less than 1
4 hours. Also, given the prior as calculated in the first part, we have fΘ|X1

(θ| 12 ) = 1
θ ln 2

if 1
2 ≤ θ ≤ 1.

For the integral to be equal to 1, we need to find the constant term. This can be found using
calculus: ∫ 1

1
2

1

θ2
dθ = 1 =⇒ fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
=

1

θ2

-0.25 0 0.25 0.5 0.75 1 1.25

0.5

1

1.5

2

2.5

3

3.5

4

Remark (Bayes’ rule variant).

P(θ|x1, x2) =
P(x2|θ, x1)P(θ|x1)

P(x2|x1)
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Proof.

fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
=

fΘ,X1,X2

(
θ,

1

2
,
1

4

)
fX1,X2

(
1

2
,
1

4

)

=

fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
fΘ,X1

(
θ,

1

2

)
fX1,X2

(
1

2
,
1

4

)

=

fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
fΘ|X1

(
θ
∣∣∣1
2

)
fX1

(
1

2

)
fX1,X2

(
1

2
,
1

4

)

=

fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
fΘ|X1

(
θ
∣∣∣1
2

)
fX2|X1

(
1

4

∣∣∣1
2

)
Thus,

fΘ|X1,X2

(
θ
∣∣∣1
2
,
1

4

)
∝ fX2|Θ,X1

(
1

4

∣∣∣θ, 1
2

)
fΘ|X1

(
θ
∣∣∣1
2

)
■

Now it’s a bit tedious since we need to perform calculations and adjust our prior each time we obtain new
data or observations. However, we also have Bayes’s rule for multiple random variables, which simplifies
the process.

fΘ|X1,··· ,Xn
(θ|x1, · · · , xn) =

fX1,··· ,Xn|Θ(x1, · · · , xn|θ)fΘ(θ)
Z(x1, · · · , xn)

∝ fX1,··· ,Xn|Θ(x1, · · · , xn|θ)fΘ(θ)
= fX1|Θ(x1|θ) · · · fXn|Θ(xn|θ)︸ ︷︷ ︸

product of likelihood

fΘ(θ)︸ ︷︷ ︸
prior

if X1, · · · , Xn are independent given Θ.

Example (Cont’d). Given that Juliet is late by 1
4 hours on their third date, how do we find the

posterior?

Solution:

fΘ|X1,X2,X3

(
θ
∣∣∣1
2
,
1

4
,
1

4

)
∝ fX1|Θ

(
1

2

∣∣∣θ) fX2|Θ

(
1

4

∣∣∣θ) fX3|Θ

(
1

4

∣∣∣θ) fΘ(θ) =
1

θ3

For fX1|Θ, fX2|Θ, fX3|Θ, they are all equal to 1
θ for θ ≥ 1

2 and θ ≥ 1
4 for the same reason shown

before. We also have fΘ(θ) = 1 if 0 ≤ θ ≤ 1. Taking the intersection, we obtain 1
θ3 for 1

2 ≤ θ ≤ 1.
For the integral to be equal to 1, we need to determine the constant term, which can be found using
calculus. ∫ 1

1
2

1

θ2
dθ =

3

2
=⇒ fΘ|X1,X2,X3

(
θ
∣∣∣1
2
,
1

4
,
1

4

)
=

2

3θ3
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Example (Biased Coin). A coin of unknown bias flips HTT. What is the bias?

Solution: Let X ∼ Bernoulli(Θ), where Θ = P(X = H). We have a prior Θ ∼ Uniform(0, 1). To
find the posterior (bias), we have:

fΘ|X1,X2,X3
(θ|H,T, T ) ∝ pX1|Θ(H|θ)pX2|Θ(T |θ)pX3|Θ(T |θ)fΘ(θ)

= θ(1− θ)(1− θ)× 1

= θ(1− θ)2

=⇒ fΘ|X1,X2,X3
(θ|H,T, T ) =

θ(1− θ)2∫ 1

0
θ(1− θ)2dθ

= 12θ(1− θ)2

To find the posterior, we often need to find the denominator Z(x), which requires some calculus techniques
and can sometimes be difficult to solve. However, there are some techniques that come in handy.

1.3 Conjugate Priors

Definition 1.3.1 (Conjugate Priors). The posterior distribution fΘ|X(θ|x) is in the same probability
distribution family as the prior distribution fΘ(θ), the prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for the likelihood functionfX|Θ(x|θ).

There are four types of conjugate priors to consider.

1.3.1 Conjugate Prior for Bernoulli

Definition 1.3.2. Suppose X1, · · · , Xn form a random sample from Bernoulli distribution with
an unknown parameter θ (0 < θ < 1). If the prior distribution fΘ(θ) is the Beta distribution
Beta(α, β) (α, β > 0), then the posterior distribution fΘ|X(θ|x) given {Xi = xi}i = 1n is the Beta
distribution Beta(α+

∑n
i=1 xi, β + n−∑n

i=1 xi).

Here we introduce the Beta random variable. It has the PDF as follows:

fΘ(θ) =


1

B(α, β)
θα−1(1− θ)β−1 for 0 < θ < 1

0 otherwise
,

where
B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
, Γ(α) =

∫ ∞

0

xα−1e−xdx = (α− 1)! (for positive integerα)

or equivalently,

B(α, β) =
(α− 1)!(β − 1)!

(α+ β − 1)!
.

The reason why B(α, β) appears in the denominator of the PDF is that it serves as the normalization
constant, ensuring that the integral equals 1 so that it is a valid PDF.

The Beta random variable is widely used to model the prior distribution of a random variable which
range is [0, 1], where α and β are hyperparameter.

Recalling the coin flip example above, with the prior Θ and observation X remaining unchanged, we can
use the Beta distribution to perform the calculation. We have Θ ∼ Uniform(0, 1) = Beta(1, 1), and for
h = 1, t = 2, we have:

fΘ|X1,X2,X3
(θ|H,T, T ) =

1

Beta(h+ 1, t+ 1)
θ2−1(1− θ)3−1 = 12θ(1− θ)2

In general, for a coin of unknown bias flips n times and gets h heads and (n−h) tails (or t tails), we can
have prior of Θ ∼ Uniform(0, 1) = Beta(1, 1), and (θ|h heads, t tails) ∼ Beta(h+ 1, t+ 1).
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The above shows that we can perform estimation based on the number of experiments, which will result
in a different PDF. With more data in hand, the accuracy of the data is higher. However, they share a
common feature: the value at which the PDF or PMF reaches its maximum is

mode[θ] =
α− 1

α− 1 + β − 1
when α, β > 1

Also, we can treat the different parameters as a
change in belief. For example, if Beta(2, 3) is our
prior, and we readjust our belief based on observa-
tions, we then obtain Beta(21, 11). This shows that
the area below the original mode 1

3 decreases, mak-
ing it less probable.
The last thing to note is that hyperparameter, in
the coin flip case, h, t, don’t matter if we observe a
large number of data samples, meaning the poste-
rior mainly depends on the observed data. However,
if the prior contains a large dataset or the size of
the observed data is small, then the prior plays an
important role in the posterior.
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·104

θ

Beta(21, 11)
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1.3.2 Conjugate Prior for Poisson

Definition 1.3.3. Suppose X1, · · · , Xn form a random sample from Poisson distribution with an un-
known mean Θ > 0. If the prior distribution fΘ(θ) is the Gamma distribution Gamma(α, β) (α, β >
0), then the posterior distribution fΘ|X(θ|x) given {Xi = xi}ni=1 is the Gamma distribution
Gamma(α+

∑n
i=1 xi, β + n).

Here we introduce another random variable that is often used as prior, Gamma random variable. It has
the PDF as follows:

fΘ(θ) =


βα

Γ(α)
θα−1e−βθ for θ > 0

0 for θ ≤ 0

,

where
Γ(α) =

∫ ∞

0

xα−1e−xdx = (α− 1)! (for positive integer α).

Again, we have the Gamma random variable as the denominator because the integral needs to be equal
to 1.

Example. At an Apple Store, the number of iPhones sold per day is modeled as a Poisson distribution
with unknown mean Θ. Suppose the prior distribution of Θ is Gamma(3, 2). Let X be the number
of iPhones sold in a specific day. If X = 3 is observed, what is the updated distribution of θ?

Solution: Here we have

X ∼ Poisson(Θ) =


e−θθx

x!
for x = 0, 1, 2 . . .

0 otherwise
;

Θ ∼ Gamma(α, β) =


βα

Γ(α)
θα−1e−βθ for θ > 0

0 for θ ≤ 0

.

Since we have observed X = 3,

fΘ|X(θ|3) ∝ fΘ(θ)fX|Θ(3|θ)

where

fΘ(θ) = Gamma(3, 2) =
23

2!
θ3−1e−2θ, fX|Θ(3|θ) = Poisson(θ) =

e−θθ3

3!
.

Then we have

fΘ|X(θ|3) ∝ fΘ(θ)fX|Θ(3|θ) =
22

3!
θ5e−3θ ∝ θ5e−3θ

fΘ|X(θ|3) = θ6−1e−3θ

Z
, Z =

∫ ∞

0

θ6−1e−3θdθ =
Γ(6)

36

Finally, we have the posterior
fΘ|X(θ|3) = Gamma(6, 3).

Above is the same as taking α = 3, β = 2, n = 1 and x = 3, then we have α + x = 6, β + n = 3. This
directly gives us Gamma(6, 3).

1.3.3 Conjugate Prior for Exponential

Definition 1.3.4. Suppose X1, · · · , Xn form a random sample from Exponential distribution with an
unknown parameter θ > 0. If the prior distribution fΘ(θ) is the Gamma distribution Gamma(α, β)
(α, β > 0), then the posterior distribution fΘ|X(θ|x) given {Xi = xi}ni=1 is the Gamma distribution
Gamma(α+ n, β +

∑n
i=1 xi).

In the case of Exponential prior, we have α = no. of trials + 1, β = sum of data + prior.
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Example. If the number of iPhones sold per hour follows a Poisson distribution with unknown
mean Θ, then the time between two successive iPhones sold follow an exponential distribution with
parameter Θ. Suppose the prior distribution of Θ is Gamma(1, 2). Let X be the time interval (in
hour) between successive iPhones sold.

Assume that we have X1 = 1.5, X2 = 2, X3 = 2.5.

Solution: Here we have

X ∼ Exponential(Θ) =

{
θe−θx for x ≥ 0

0 for x < 0
;

Θ ∼ Gamma(1, 2).

Since we have observed X1, X2, X3,

fΘ|X1,X2,X3
(θ|1.5, 2, 2.5) ∝ fΘ(θ)fX1,X2,X3|Θ(1.5, 2, 2.5|θ)

where

fΘ(θ) = Gamma(1, 2) =
21

1!
θ1−1e−2θ, fX1,X2,X3|Θ(1.5, 2, 2.5|θ) = (θe−1.5θ)(θe−2θ)(θe−2.5θ).

Then we have

fΘ|X1,X2,X3
(θ|1.5, 2, 2.5) ∝ fΘ(θ)fX1,X2,X3|Θ(1.5, 2, 2.5|θ) = 2θ3e−(2+6)θ ∝ θ3e−(2+6)θ

fΘ|X(θ|3) = θ3e−(2+6)θ

Z
, Z =

∫ ∞

0

θ3e−(2+6)θdθ =
Γ(4)

84

Finally, we have the posterior
fΘ|X(θ|3) = Gamma(4, 8).

Above is the same as taking α = 1, β = 2, n = 3, x1 = 1.5, x2 = 2 and x3 = 2.5, then we have
α + n = no. of trials + 1 = 3 + 1 = 4, β + n = sum of trials + prior = 6 + 2 = 8. This directly gives us
Gamma(4, 8).

1.3.4 Conjugate Prior for Normal Distribution

Definition 1.3.5. Suppose X1, · · · , Xn form a random sample from a normal distribution with an
unknown mean µ and a known variance σ2 > 0. If the prior distribution fΘ(µ) is the normal
distribution N (µ, σ2

0), then the posterior distribution fΘ|X(µ|x) given {Xi = xi}ni=1 is the normal
distribution N (µ′, σ′2), where

µ′ =
σ2µ0 + σ2

0

∑n
i=1 xi

σ2 + nσ2
0

σ′2 =
σ2σ2

o

σ2 + nσ2
o

Definition 1.3.6 (A more general case). Suppose X1, · · · , Xn form a random sample from a normal
distribution with a common unknown mean θ and the known variance σ2

i > 0. If the prior distri-
bution fΘ(θ) is the normal distribution N (µ0, σ

2
0), then the posterior distribution fΘ|X(θ|x) given

that {Xi = xi}ni=1 is the normal distribution N (µ, σ2), where

µ

σ2
=

µ0

σ2
0

+
x1

σ2
1

+ · · ·+ xn

σ2
n

1

σ2
=

1

σ2
0

+
1

σ2
1

+ · · ·+ 1

σ2
n

Here we need to consider a special case when both σ2
0 and σ2 are equal to 1, then we have

µ′ =
µ0 +

∑n
i=1 xi

1 + n
σ′2 =

1

1 + n
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Example. An N (Θ, 1) random variable takes value 3.97. Θ follows a standard normal. What is the
posterior of Θ?

Solution: Here we have the PDF of N (µ, σ2)

fX(x) =
1

σ
√
2π

e−
1
2

(x−µ)2

σ2

Given that the prior = Θ ∼ N (0, 1), posterior = fΘ|X(θ|x) ∝ fΘ(θ)fX|Θ(x|θ), we have

fΘ(θ) =
1√
2π

e−
1
2 θ

2

fX|Θ(x|θ) =
1√
2π

e−
1
2 (x−θ)2

fΘ|X(θ|x) ∝ fΘ(θ)fX|Θ(x|θ) =
1√
2π

e−
1
2 θ

2 × 1√
2π

e−
1
2 (x−θ)2

∝ e−
1
2 θ

2 × e−
1
2 (x−θ)2

= e−
1
2 θ

2− 1
2 (x−θ)2

= e
−(

√
2θ− 1√

2
x)2

e−
x2

4︸ ︷︷ ︸
constant term

∝ e
−(

√
2θ− 1√

2
x)2

= e
− 1

2

(θ− x
2
)2

( 1√
2
)2

Then we have
µ =

x

2
=

3.97

2
= 1.985 σ2 = (

1√
2
)2 =

1

2

Finally, we have the posterior

fΘ|X(θ|3) = N (1.985,
1

2
)

Above is the same as taking µ0 = 0, x1 = 3.97, σ0 = 1 and σ1 = 1, then we have

1

σ2
=

1

1
+

1

1
=⇒ σ =

1√
2

µ
1
2

=
0

1
+

3.97

1
=⇒ µ = 1.985,

which directly gives us N (1.985,
1

2
).

When σ0 = σ1 = · · · = 1, we can find σ and µ by:

σ =
1√
n+ 1

, µ =
x0 + x1 + · · ·+ xn

n+ 1

Example. Three independent N (Θ, 1) random variables take values 3.97, 4.09, 3.11. What is Θ?

Solution: Here we assume the priors are Θ ∼ N (0, 1), and from observation we have x1 = 3.97, x2 =
4.09, x3 = 3.11.

Then, for the posterior, we have

fΘ|X1,X2,X3
(θ|x1, x2, x3) ∼ N

(
0 + 3.97 + 4.09 + 3.11

1 + 3
,

(
1√
1 + 3

)2
)

≈ N (2.79,
1

4
)

1.4 Applications of Bayesian Statistic

In this section, we will study the use of Bayesian Statistics.

To begin with, think about the coin flips event. Assume that you have observed some data, i.e., the
first 10 coin flips give the sequence H T T H T T H T T T. You now have the model; then, what can it
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be used for? It turns out that we can use it to make predictions, which tell the probability of the next
flip being a head. We can also use it to do estimation, such as determining the probability of heads for
this coin. Additionally, we can perform something called hypothesis testing, which helps us find the best
guess for the estimation.

1.4.1 Prediction

Let’s revisit the previous dating scenario.

Example. On her first date, Juliet arrives 1
2 hour late. How likely is she to arrive more than 3

4 hour
late next time?

Solution: Let X1, X2 ∼ Uniform(0,Θ), where Θ = Uniform(0, 1). From the posterior that we
calculated before, we have

fΘ|X(θ|1
2
) =


1

θ ln 2
if

1

2
≤ θ ≤ 1

0 otherwise

We can then use this posterior to make predictions.

P(X2 ≥ 3

4
|X1 =

1

2
) =

∫ +∞

−∞
P
(
X2 ≥ 3

4
|X1 =

1

2
,Θ = θ

)
P
(
θ|X1 =

1

2

)
︸ ︷︷ ︸

Total Probability Theorems

dθ

(∗) =
∫ 1

1
2

P
(
X2 ≥ 3

4
|X1 =

1

2
,Θ = θ

)
fΘ|X(θ|1

2
)dθ

(∗∗) =
∫ 1

3
4

P
(
X2 ≥ 3

4
|Θ = θ

)
fΘ|X(θ|1

2
)dθ

(∗ ∗ ∗) =
∫ 1

3
4

(θ − 3

4
)
1

θ

1

θ ln 2
dθ

=

∫ 1

3
4

1

θ ln (2)
dθ −

∫ 1

3
4

3

4θ2 ln (2)
dθ

=
ln 4

3 − 1
4

ln 2
= 0.054

In (*), we change the lower boundary from −∞ to
1

2
and the upper boundary from +∞ to 1

because fΘ|X(θ|1
2
) would be 0 outside [

1

2
, 1]. Then, in (**), we again update the lower boundary

to
3

4
because for

1

2
≤ θ ≤ 3

4
, P(X2 ≥ 3

4
|Θ = θ) would be equal to 0. In (***), we can directly find

the left-hand side by (θ− 3

4
)
1

θ
because X2 ∼ Uniform(0, θ). The PDF can be directly computed by

finding the area.

Remark. One may start with ∫ +∞

−∞
P
(
X2 ≥ 3

4
,Θ = θ|X1 =

1

2

)
dθ
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where

P
(
X2 ≥ 3

4
,Θ = θ|X1 =

1

2

)
=

P
(
X2 ≥ 3

4
,Θ = θ,X1 =

1

2

)
P
(
X1 =

1

2

)

=

P
(
X2 ≥ 3

4
|X1 =

1

2
,Θ = θ

)
P
(
X1 =

1

2
,Θ = θ

)
P
(
X1 =

1

2

)
= P

(
X2 ≥ 3

4
|X1 =

1

2
,Θ = θ

)
P
(
θ|X1 =

1

2

)
If we have past data and a prior distribution, we can often make predictions.

Example. Assume that we have observed n heads in coin flips. What is the probability that the
next coin flip will also be a head?

Solution: For coin flips, we can use X ∼ Bernoulli(Θ), where Θ = P(X = H). So for the prior, we
have Θ ∼ Uniform(0, 1) = Beta(1, 1). Since the prior follows a beta distribution, the posterior also
follows a beta distribution. Therefore, the posterior is given by:

Θ|n Heads ∼ Beta(n+ 1, 1)

fΘ|X1,··· ,Xn
(θ|nH) =

(n+ 1)!

n!1!
θn = (n+ 1)θn

We then use this posterior to update our belief, making it the prior for predicting whether the next
coin flip will be heads.

P(H∗|nH) =

∫ 1

0

P(H∗|θ)fΘ|X1,··· ,Xn
(θ|nH)dΘ

=

∫ 1

0

θ(n+ 1)θndθ

=
n+ 1

n+ 2

For example, if we have previously flipped n = 100 heads, the probability of the next coin flip being
heads is 101

102 .

To summary, in Bayesian prediction, for observation X = x (past data), if X is continuous, to predict
x∗ ∈ [a, b]

P(x∗ ∈ [a, b]|X = x) =

∫ +∞

−∞
P(x∗ ∈ [a, b]|θ) fΘ|X(θ|x)︸ ︷︷ ︸

prior

dθ

where

P(x∗ ∈ [a, b]|θ) =
∫ b

a

fX|Θ(x
∗|θ)dx∗.

If X is discrete, then to predict x∗

P(x∗|X = x) =

∫ +∞

−∞
P(x∗|θ)fΘ|X(θ|x)dθ

1.4.2 Point Estimation

The question then arises: how do we turn the conditional PDF or PMF fΘ|X(θ|x) estimate into a single
number? Or, to put it simply, how do we find the θ that is the best estimate of the parameter from the
posterior? It turns out we have two methods, namely the Maximum a Posterior (MAP) estimator and
the Conditional Expectation (CE) estimator.
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For MAP, we find the most likely value:

θMAP = argmax
θ

fΘ|X(θ|x).

For CE, we find the average among all possible θ, and the expectation µ = E[Θ] will minimize the mean
square error E[(Θ− θ)2]:

E[Θ|X = x].

To illustrate, let’s return to the dating problem again.

Example. In Romeo’s model, on their first date, Juliet arrived 1
2 hour late. What would be his

estimate for the probability of Juliet being late?

Solution:

MAP (optimistic method)

Posterior fΘ|X(θ|1
2
) =

1

θ ln 2
when

1

2
≤ θ ≤ 1 =⇒ argmax

θ

1

θ ln 2
= argmax

θ

1

θ

which gives

θMAP =
1

2
refers to the graph

CE (conservative method)

E[Θ|X1 =
1

2
] =

∫ 1

1
2

θ
1

θ ln 2
dθ =

1

2 ln 2
≈ 0.72

Remark. Note that prediction refers to forecasting the future value, while estimation involves cal-
culating the likely value of a parameter based on samples.

Here we have two special cases:

1. Point estimation for a Beta random variable.

Given that the prior is Θ ∼ Beta(1, 1), and the posterior is Θ|h Heads, t Tails ∼ Beta(1+h, 1+ t), where
α = h+ 1, β = t+ 1, we have:

mode[Beta(α, β)] : θ =
α− 1

α− 1 + β − 1
when α, β > 1.

θMAP =
α− 1

α− 1 + β − 1
=

h

h+ t

CE =
α

α+ β

As the number of data points increases, the difference between MAP and CE will become smaller, and
we will obtain a closer value.

2. Point estimation for Normal random variable.

Given that the prior is Θ ∼ N (µ0, 1), and the posterior is Θ|X1, · · · , Xn ∼ N (µ0+x1+···+xn

n+1 , 1
n+1 ), we

have
mode[N (µ, σ2)] : θ = µ

θMAP =
µ0 + x1 + · · ·+ xn

n+ 1

CE = E[N (µ, σ2)] = x
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1.4.3 Hypothesis Testing

Suppose that in a hypothesis testing problem, Θ takes m values θ1, · · · , θm. Recall that in hypothesis
testing, we want to find the best guess for the decision or classification, i.e., checking how likely the
estimated parameter is to be the actual one given the observed data. Then, how do we choose the one
for which fΘ|X(θi|x) is the largest (best guess), so that we have the optimal hypothesis θ?

Example (Estimation).

Now, you receive an email. It could be spam or legitimate, with Θ = 1 indicating spam with a 20%
chance, and Θ = 0 indicating legit with an 80% chance. Suppose there are two patterns, X1 and
X2, which are independent given a specific email, to classify whether the email is spam or legit.

Θ P(X1 = 1|θ) P(X2 = 1|θ)
Θ = 0 legit 0.03 0.0001
Θ = 1 spam 0.1 0.01

Then, in a specific email x, observe that X1 = 1 and X2 = 0. Is it spam or legitimate?

Solution:

P(Θ = 1|X1 = 1, X2 = 0) ∝ P(X1 = 1, X2 = 0|Θ = 1)P(Θ = 1) = 0.1× 0.99× 0.2 ≈ 0.0198

P(Θ = 0|X1 = 1, X2 = 0) ∝ P(X1 = 1, X2 = 0|Θ = 0)P(Θ = 0) = 0.03× 0.9900× 0.8 ≈ 0.0240

Thus, MAP Θ = 0, shows that the email is legitimate.

Example (Hypothesis testing).

We have two coins, A and B. Coin A has a 2
3 probability of landing heads, and coin B has a 2

3
probability of landing tails. You flip a random coin and observe the sequence H H T. Which coin did
you flip? What is the probability that you are wrong based on MAP, given the outcome is H H T?

Solution:

Since we have equally likely prior P(Θ = A) = P(Θ = B) = 50%,

P(Θ = A|HHT ) ∝ P(HHT |Θ = A)P(Θ = A) =
2

3
× 2

3
× 1

3
× 1

2
=

2

27

P(Θ = B|HHT ) ∝ P(HHT |Θ = B)P(Θ = B) =
1

3
× 1

3
× 2

3
× 1

2
=

1

27

Thus, MAP Θ = A.
error = P(B|HHT )

=
P(HHT |Θ = B)P(Θ = B)

P(HHT )

=
1
27

1
27 + 2

27

=
1

3

This shows that the event would be wrong at 1
3 of the time.

We find the probability that, even if the calculation is correct, it is still possible for us to make a wrong
guess from time to time. But then, what is the probability of being wrong on average?
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Example. What is the probability that you are wrong on average based on the MAP estimate given
the outcome of 3 flips?

Solution:

P(θMAP ̸= θ) = P(θMAP = B, θ = A) + P(θMAP = A, θ = B)

= P(θMAP = B|θ = A)P(θ = A) + P(θMAP = A|θ = B)P(θ = B)

We can find the probability of the outcome given the coin type, which we used to find θMAP.

For example,

p3H|θ=A =

(
3

3

)
(
2

3
)3(1− 2

3
)0 =

8

27
; p2H1T|θ=A =

(
3

2

)
(
2

3
)2(1− 2

3
)1 =

12

27

Then we have

Outcome 3H 2H1T 1H2T 3T

θMAP A A B B

poutcome|θ=A
8

27

12

27

6

27

1

27

poutcome|θ=B
1

27

6

27

12

27

8

27

Now we can find the probability of being wrong on average.

P(θMAP ̸= θ) = P(θMAP = B|θ = A)P(θ = A) + P(θMAP = A|θ = B)P(θ = B)

= (P(1H2T|θ = A) + P(3T|θ = A))P(θ = A)

+ (P(2H1T|θ = B) + P(3H|θ = B))P(θ = B)

=

(
6

27
+

1

27

)
× 1

2
+

(
6

27
+

1

27

)
× 1

2

=
7

27

For binary hypothesis testing error, we have θ = 0 (negative) or θ = 1 (positive), which represent the
true state. Similarly, we have θ̂ = 0 (negative) or θ̂ = 1 (positive), which represent the estimated state.
Then, P(θ̂ = 1, θ = 0) represents a false positive, and P(θ̂ = 0, θ = 1) represents a false negative. For the
calculation, we can then simply use

P(θ̂ ̸= θ) = P(θ̂ = 1, θ = 0) + P(θ̂ = 0, θ = 1)

= P(θ̂ = 1|θ = 0)P(θ = 0) + P(θ̂ = 0|θ = 1)P(θ = 1)

Example. A car-jack detector X outputs N (0, 1) if there is no intruder and N (1, 1) if there is one.
When should the alarm activate? What is the error?

Solution:

Prior: P(θ = 1) = p = 10% (assume p = 10%, and θ = 0 for no intruder case).

Then for posterior, we have

fΘ|X(0|x∗) ∝ PΘ(0)fX|Θ(x
∗|0) ∝ (1− p)e−

x∗2

2

fΘ|X(1|x∗) ∝ PΘ(1)fX|Θ(x
∗|1) ∝ pe−

(x∗−1)2

2

fΘ|X(1|x∗)

fΘ|X(0|x∗)
=

pe−
(x∗−1)2

2

(1− p)e−
x∗2

2

=
p

1− p
ex

∗− 1
2
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If the value is greater than 1, there will be an intruder. Otherwise, there will be no intruder. To
check if the value is greater than 1, we can use a logarithmic trick.

p

1− p
ex

∗− 1
2 > 1 ⇐⇒ x∗ >

1

2
+ ln

1− p

p
≈ 2.7

Therefore, when the signal strength is greater than 2.7, the alarm will be triggered.

error = P(θ̂ ̸= 0)

= P(θ = 0, x > 2.7) + P(θ = 1, x ≤ 2.7)

= P(x > 2.7|θ = 0)P(θ = 0) + P(x ≤ 2.7|θ = 1)P(θ = 1)

= P(N (0, 1) > 2.7)P(θ = 0) + P(N (1, 1) ≤ 2.7)P(θ = 1)

≈ 9.86%
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Chapter 2

Sampling Statistics

Starting from this chapter, we will transition from Bayesian statistics to classical statistics. In Bayesian
statistics, parameters are treated as random variables with prior distributions, rather than fixed but
unknown values. In classical statistics, however, parameters are treated as deterministic (fixed) quantities
that are simply unknown. Therefore, we use sampling distributions to estimate parameters.

2.1 Sample Statistics

A random sample of size n is a joint outcome of n independent random variables X1, · · · , Xn, each with
the same PDF or PMF.

Remark. By saying same PDF or PMF, we mean that

E[X1] = · · · = E[Xn] = µ; Var[X1] = · · · = Var[Xn] = σ2

The process of generating a specific random sample is called sampling. Note that repetition is allowed
when taking samples.

2.1.1 Sampling Distributions

Given a random sample of n independent random variables X1, · · · , Xn with the same PDF or PMF,
the numerical descriptive measures of the sample are called statistics.

Sample mean: X =
X1 + · · ·+Xn

n
;

Sample proportion: p̂ =
X1 + · · ·+Xn

n
, where Xi are Bernoulli random variables;

Sample sum: X = X1 + · · ·+Xn;

Sample variance: s2 =

∑n
i=1(Xi −X)2

n
.

Here, all the sample statistics are random variables, which are assumed to occur with repetitions. The
probability distributions for statistics are called sampling distributions.

2.1.2 Sample Mean

Example. Consider a fair coin X (X = 1 for heads, X = 0 for tails). Flip the coin twice, and we
obtain X1, X2. Then, what is the PMF of X?

Solution: For the joint PMF of X1, X2, we have
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Joint PMF X1 = 0 X1 = 1

X2 = 0
1

4

1

4

X2 = 1
1

4

1

4

Then we have

x 0 1 2

P(X1 +X2 = x)
1

4

1

2

1

4

x 0
1

2
1

P(X =
X1 +X2

2
= x)

1

4

1

2

1

4

Thus, when we flip the coin n times, we have

nX ∼ Binomial(n,
1

2
),

where X is always a random variable.

In this example, we assume that X ∼ Bernoulli(p) with p = P(X = 1) = 1
2 . However, in statistics,

we do not know p. So how can we describe the distribution? In statistics, we can derive the sampling
distribution of sample mean using the laws of probability.

Consider a class that has just finished an exam, and the grades have been released. Since you are a
student, you are not supposed to know all the grades or data. So, how can you find out the average exam
grade? The most naive approach is to ask your classmates for their grades. For example, you ask three
of them, and their grades are 39, 30, and 43, respectively. Then, you can calculate a sample average,
which is simply

x =
39 + 30 + 43

3
≈ 37.33.

However, you cannot ensure that this is 100% accurate, as you might randomly ask three classmates who
all happen to have low grades, such as 6, 7, and 5, resulting in a sample average of x = 6. So how do we
measure accuracy? Again, we use the laws of probability to do so.

The sample mean X =
X1 + · · ·+Xn

n
is an estimator of the actual mean:

µ = E[X1] = · · · = E[Xn],

where Xi is a random variable. Also, from the Weak Law of Large Number, we have

P(|X − µ| ≥ ε) ≤ δ,

The law of probability states that the probability of the sample mean being lower than the actual mean
is small and is upper bounded by δ. This leads to an important property of the sample mean: it is
consistent. In other words, for every positive ϵ and δ, there exists a sufficiently large sample size n such
that the probability that X differs from the actual mean by more than ϵ is less than δ.

There is another important property of the sample mean: it is an unbiased estimator. This means that
for every n, E[X] = µ. This is an intuitive concept. Since each Xi is a random variable sampled from
the population, the expected value of the sample mean is simply the mean of the actual population.

Proof.

E[X] = E
[
X1 + · · ·+Xn

n

]
=

1

n
E[X1 + · · ·+Xn] =

1

n
(E[X1] + · · ·+ E[Xn]) =

1

n
× nµ = µ

■

Then, based on the Central Limit Theorem, we can find the sampling distribution of the sample mean.
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Since we have

E[X] = µ; Var[X] = Var

[∑n
i=1 Xi

n

]
=

1

n2
Var

[
n∑

i=1

Xi

]
=

1

n2

n∑
i=1

Var[Xi] =
σ2

n
,

for every t,

lim
n→∞

P

(
X

n
≤ E[X]

n
+

t
√
Var[X]

n

)
= Φ(t);

lim
n→∞

P
(
X ≤ µ+ t

σ√
n

)
= Φ(t),

where
X − µ

σ√
n

= Z ∼ N (0, 1); X ∼ N
(
µ,

(
σ√
n

)2
)
.

Note that X follows a normal distribution for sufficiently large n. This leads to the question of how to
choose the ideal n.

Example. In a population of 1000, 200 people have disease X. For a sample of size 16, what is the
probability that the sample mean is in the range of 10% to 30%? Also, consider that 100 people
have disease Y out of 1000. For the same sample size, what is P(0.05 ≤ Y ≤ 0.15)?

Solution:

Disease X: From data we have

Xi ∼ Bernoulli
(
p =

200

1000
= 0.2

)
, Xi = 1 : having disease X

X =
X1 + · · ·+X16

16
=⇒ 16X ∼ Binomial(16, 0.2)

P(0.1 ≤ X ≤ 0.3) = P(1.6 ≤ 16X ≤ 4.8) = P(2 ≤ Binomial(16, 0.2) ≤ 4) ≈ 0.657

By using Central Limit Theorem,

Xi ∼ Bernoulli(0.2), µ(X) = µXi
= p = 0.2, σ(X) =

σXi√
n

=

√
p(1− p)√

n
=

√
0.2× 0.8√

16
= 0.1

P(0.1 ≤ X ≤ 0.3) ≈ P
(
0.1− 0.2

0.1
≤ X − µX

σX

≤ 0.3− 0.2

0.1

)
= P(−1 ≤ Z ≤ 1) = 0.683

Here the difference is within 2.6%.

Disease Y:

Yi ∼ Bernoulli
(
p =

100

1000
= 0.1

)
, Yi = 1 : having disease Y, 16Y ∼ Binomial(16, 0.1)

P(0.05 ≤ Y ≤ 0.15) = P(0.8 ≤ 16Y ≤ 2.4) = P(1 ≤ Binomial(16, 0.2) ≤ 2) ≈ 0.604

By using Central Limit Theorem,

Yi ∼ Bernoulli(0.1), µ(Y ) = 0.1, σ(Y ) =
σYi√
n
=

√
0.1× 0.9√

16
= 0.075

P(0.05 ≤ Y ≤ 0.15) ≈ P
(
0.05− 0.1

0.075
≤ Y − µY

σY

≤ 0.15− 0.1

0.075

)
= P(−0.666 ≤ Z ≤ 0.666) = 0.495

Here the difference is within 11%.

Therefore, if the population data is normal, then the sampling distribution of X is also normal, regardless
of the sample size. For n ≥ 30, the Central Limit Theorem (CLT) usually applies. However, it depends
on the data and the desired precision.
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Remark. Again, note that in statistics, we normally don’t have the actual data. We are more likely
asked to find a function or model to describe the distribution. The data being used are just for
demonstration purposes.

2.1.3 Sample Variance

Above, we talked about the unbiased estimator, the sample mean. However, in terms of sample variance,
it is a biased estimator due to the biased expectation.

Consider again the exam grade example that was used for illustration earlier. We have a sample mean
x = 37.33, and then we can find the sample variance.

s2 =
(39− 37.33)2 + (30− 37.33)2 + (43− 37.33)2

3
≈ 29.56.

However, as mentioned above, once the sample we take is different, it leads to a different sample variance.
In the case of sample variance, the average sample variance, or the expected value of the sample variance,
is often smaller than the actual population variance.

For example, we now have data on some X ∼ Bernoulli(p), p = 1
2 . To find σ2, we can start with the

variance for a Bernoulli random variable, in which Var[X] = p(1− p). Then, we have the actual variance
σ2 = 1

4 . When we take two samples, we find that the PMF of s2 = 1
2 ((X1 −X)2 + (X2 −X)2).

Joint PMF X1 = 0 X1 = 1

X2 = 0
1

4

1

4

X2 = 1
1

4

1

4

If X1 = X2, then X = X1 = X2, s
2 = 0; If X1 ̸= X2, then X = 1

2 , s
2 = 1

4 . This gives

s2 0 1
4

P(S2 = s2)
1

2

1

2

Then we have
E[S2] = 0× 1

2
+

1

4
× 1

2
=

1

8
=

1

2
σ2,

which is smaller than the actual variance.

In the general case, a random sample of size n consists of independent random variables X1, · · · , Xn

with the same PDF or PMF.
E[S2] =

n− 1

n
σ2,

which shows that we tend to underestimate. However, for a sufficiently large n → ∞, n−1
n → 1.

We can correct the sample variance using the formula above by using n−1
n , such that

E[
n

n− 1
S2] = σ2

(
n

n− 1
S2 =

n

n− 1

∑n
i=1(Xi −X)2

n
=

∑n
i=1(Xi −X)2

n− 1

)
Note that the factor is not significant when n is large, but it is important when n is small.
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Proof.
s2 =

1

n

(
(X1 −X)2 + · · ·+ (Xn −X)2

)
=

1

n

((
X1 −

X1 + · · ·+Xn

n

)2

+ · · ·+
(
Xn − X1 + · · ·+Xn

n

)2
)

=
1

n

(
n∑

i=1

X2
i +

n(
∑n

i=1 Xi)
2

n2
− 2

(
n∑

i=1

Xi

) ∑n
i=1 Xi

n

)

=

∑n
i=1 X

2
i

n
−
(∑n

i=1 Xi

n

)2

=

∑n
i=1 X

2
i

n
−X

2

E[s2] = E
[∑n

i=1 X
2
i

n
−X

2
]
=

∑n
i=1 E[X2

i ]

n
− E[X2

]

Var[Xi] = E[X2
i ]− E[Xi]

2; E[X2
i ] = σ2 + µ2

Var[X] = E[X2
]− E[X]2; E[X2

] =
σ2

n
+ µ2

By substitution, we have

E[s2] =
∑n

i=1 E[X2
i ]

n
− E[X2

] = σ2 + µ2 − σ2

n
− µ2 =

n− 1

n
σ2

■

2.2 Point Estimation

Previously, in Bayesian statistics, we used MAP for point estimation. In classical statistics, there is also
a method for point estimation, called Maximum Likelihood Estimation (MLE).

Recall that in classical statistics, the parameter θ is a deterministic quantity that happens to be unknown,
and we try to estimate this parameter. Therefore, we develop an estimator θ̂ based on the observations.

2.2.1 Estimators

Suppose that X1, · · · , Xn are independent samples with the same PDF/PMF parameterized by θ. Then
we can define the following random variables:

Estimator: Θ̂n = g(X1, · · · , Xn);

Estimate: θ̂n = g(X1 = x1, · · · , Xn = xn),

where Θ is the random variable that estimates θ, for example, the sample mean.

Then we have:

Unbiased: E[Θ̂n] = θ

Asymptotically unbiased: lim
n→∞

E[Θ̂n] = θ

Consistent: Θ̂n converges to θ in probability

lim
ε→0

lim
n→∞

P(|Θ̂n − θ| ≥ ε) = 0

For an asymptotically unbiased estimator, when n is large enough, i.e., with a sufficiently large sample
size, we can approximate the estimator to the actual value. Therefore, we can also use the weak law
of large numbers, which states that with a sufficiently large sample size, P(sample error > 0) becomes
small, meaning Θ̂n is a good estimator.
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2.2.2 Maximum Likelihood Estimation

Suppose that X1, · · · , Xn are independent samples with the same PDF fX(X|θ) (or PMF PX(X|θ)).
Then, for the maximum likelihood estimate of θ, we have

θ̂n = argmax
θ

fX(x1, · · · , xn|θ).

Through the observation process, we estimate θ using different values. The maximum likelihood estimate
is the value of θ that maximizes the likelihood function, representing the parameter value most likely to
have produced the observed data:

fX(x|θ̂) = max
θ

fX(x|θ)

Example. What is the MLE for θ from Uniform(0, θ) samples?

Solution: As we observe x1, x2, x3 independently from Uniform(0, θ), we have:

fX(x1, x2, x3|θ) = fX(x1|θ)fX(x2|θ)fX(x3|θ) =
1

θ3
( if θ ≥ x1, x2, x3 > 0)

Here, 1
θ3 is a decreasing function when θ > 0. To maximize the probability, we want to minimize θ.

However, the constraint is that θ ≥ max{x1, x2, x3} > 0. Therefore, we choose θ = max{x1, x2, x3},
where 1

θ3 reaches its maximum.
θMLE = max{x1, x2, x3}

Remark. Notice that here θ is treated as an unknown value.

Example. Now we try to find the MLE for Bernoulli(θ). Suppose we observe k heads and n − k
tails. What is θMLE?

Solution:
θMLE = argmax

θ
fX(x1, · · · , xn|θ)

= argmax
θ

θk(1− θ)n−k

= argmax
θ

Beta(k + 1, n− k + 1)

Since

Beta(k + 1, n− k + 1) =


1

B(k + 1, n− k + 1)
θk(1− θ)n−k if 0 < θ < 1;

0 otherwise

and we have
mode(Beta(α, β)) =

α− 1

α− 1 + β − 1
.

Thus,

θMLE =
k

n
.

2.2.3 Systematic Approach to the MLE

We can have a general approach to find MLE. As before, we have MLE: θ̂ = argmaxθ fX(x1, · · · , xn|θ).
If θ has discrete values, we then compute fX(x1, · · · , xn|θ) for each possible value and choose the
one that maximizes the likelihood. If θ has continuous values, then we can rely on the properties of
fX(x1, · · · , xn|θ) to find θMLE. However, for complicated cases, we need to use another approach.

Since fX(x1, · · · , xn|θ) is a function of θ, we can find the θ that maximizes the function by using
derivatives if fX(x1, · · · , xn|θ) is differentiable with respect to θ (we also consider the boundary cases).

∂fX(x1, · · · , xn|θ)
∂θ

= 0
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If such an equation can be solved, then we get a closed-form (analytical) solution for θMLE.

Moreover, if there are more than one parameter to estimate, we can solve the equations jointly.

{θ̂1, · · · , θ̂m} = arg max
{θ̂1,··· ,θ̂m}

fX(x1, · · · , xn|θ1, · · · , θm)



∂fX(x1, · · · , xn|θ1, · · · , θm)

∂θ1
= 0

· · ·
∂fX(x1, · · · , xn|θ1, · · · , θm)

∂θm
= 0

However, it can become complicated when n is large, as X1, · · · , Xn are independent.

fX(x1, · · · , xn|θ) =
n∏

i=1

fX(xi|θ) =⇒
∂fX(x1, · · · , xn|θ)

∂θ
=

∂

n∏
i=1

fX(xi|θ)

∂θ

Therefore, we introduce the log-likelihood. For maximum likelihood, we have:

θ̂ = argmax
θ

fX(x1, · · · , xn|θ).

For maximum log-likelihood, we have

θ̂ = argmax
θ

ln (fX(x1, · · · , xn|θ)) .

This is because the ln(·) function converts the product into sum. Then we have

ln (fX(x1, · · · , xn|θ)) = ln

(
n∏

i=1

fX(xi|θ)
)

=

n∑
i=1

ln (fX(xi|θ))

Also, the ln(·) function is a strictly increasing function. If θ̂ maximizes ln (fX(x1, · · · , xn|θ)), it also
maximizes fX(x1, · · · , xn|θ).

Example. A N (µ, σ2) random variable takes the values 2.9 and 3.3. What is the MLE for µ and
σ2?

Solution: Denote v = σ2. For likelihood, we have

fX(2.9, 3.3|µ, v) = 1√
2πv

e

(
− (2.9−µ)2

2v

)
1√
2πv

e

(
− (3.3−µ)2

2v

)
=

1

2πv
e

(
− (2.9−µ)2

2v

)
e

(
− (3.3−µ)2

2v

)

For log-likelihood, we have

ln fX(2.9, 3.3|µ, v) = ln e

(
− (2.9−µ)2

2v

)
+ ln e

(
− (3.3−µ)2

2v

)
− ln 2πv

= − (2.9− µ)2 + (3.3− µ)2

2v
− ln 2π − ln v

Then we differentiate the log-likelihood.

∂ ln fX(2.9, 3.3|µ, v)
∂µ

= 0

2.9− µ+ 3.3− µ

v
= 0

µ̂ =
2.9 + 3.3

2
= 3.1
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∂ ln fX(2.9, 3.3|µ, v)
∂v

= 0

(2.9− µ)2 + (3.3− µ)2

2v2
− 1

v
= 0

(2.9− µ)2 + (3.3− µ)2 − 2v

2v2
= 0

v =
0.04 + 0.04

2
= 0.04

In general, for a random sample of size n, X1, · · · , Xn drawn from a normal distribution N (µ, σ2), the
maximum likelihood estimations for µ and σ2 are:

µ̂ =
1

n

n∑
i=1

Xi

σ̂2 =
1

n

n∑
i=1

(Xi − µ̂)2
,

where the sample mean is an unbiased estimator E[µ̂] = µ, and the sample variance is a biased estimator
E[σ̂2] = n−1

n σ2 ̸= σ2.

Notice that in practice, we use the corrected unbiased estimator

σ̂2 =
1

n− 1

n∑
i=1

(Xi − µ̂)2.
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Chapter 3

Confidence Intervals

In this chapter, we continue the discussion of classical statistics.

In the previous chapter, we discussed the estimation of the value of estimators. However, what we did
not discuss is how much the value deviates from the actual one. In other words, how likely is it that the
estimated value we have will be the actual one? Since, in classical statistics, the parameters are unknown
and not deterministic, we use confidence intervals to determine this probability.

3.1 Definition

In the previous discussion, we stated that θ is an unknown parameter. We then use the estimator Θ̂ to
estimate the value of θ, where Θ̂ is a random variable with sample size n. Given different sample sets, the
estimate of θ varies. We have discussed unbiasedness, asymptotic unbiasedness, and consistency, which
are properties of the estimator rather than a specific estimate.

Thus, besides obtaining a single numerical estimate θ̂n of θ based on a specific set of n observed samples,
we also want to construct a so-called confidence interval, which not only provides a point estimate but
also estimates an interval of values that we are confident contains the unknown θ.

A confidence interval is an interval that contains θ with a certain high probability. For example, we
could say that there is a 90% probability that θ lies within the interval.

Based on the point estimate θ̂n, we construct an interval [θ̂−n , θ̂+n ], where θ̂−n < θ̂+n , such that we are
confident that θ falls within the interval:

P(θ̂−n ≤ θ ≤ θ̂+n ) ≥ 1− α︸ ︷︷ ︸
Confidence Level

Here, [θ̂−n , θ̂+n ] is called the (1− α) confidence interval, where θ̂−n is the lower confidence limit, and θ̂+n is
the upper confidence limit.

Remark. Note that in the above, θ is a true parameter rather than a random variable. To find
the probability, one must use the random variable Θ; otherwise, we are unable to determine the
likelihood.

We define the width of the confidence interval as θ̂+n − θ̂−n , and α as the confidence parameter. For
example, if the confidence parameter is α = 5%, then the confidence level is 95%. One needs to ensure
that the confidence parameter is low while maintaining a high confidence level.

For θ̂−n and θ̂+n , we can theoretically choose any values. For example, setting them to −∞ and +∞ would
give a 100% confidence level, but such an interval is uninformative. Additionally, in most cases, θ̂−n and
θ̂+n are symmetric in magnitude since we aim to find the narrowest confidence interval.

Naturally, a question arises: what is the best confidence interval we can choose?
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3.2 Confidence Interval for Mean

Suppose we have independent samples X1, · · · , Xn with the same PDF or PMF, i.e., they share the same
mean µ and variance σ2. If these samples are normally distributed, i.e., Xi ∼ N (µ, σ2), then the sample
mean

X =
X1 + · · ·+Xn

n

also follows a normal distribution:

X ∼ N
(
µ,

(
σ√
n

)2
)
.

If X1, · · · , Xn are not normally distributed but n is large (n ≥ 30), then by the central limit theorem,
the sample mean X can still be approximated by the same normal distribution.

As shown before, if X1, · · · , Xn are normally distributed as N (µ, σ2) or if n is large, then

X ∼ N
(
µ,

(
σ√
n

)2
)

Z =
X − µ

σ√
n

∼ N (0, 1).

Suppose σ2 is known. Then, a (1− α)-confidence interval for the mean µ is given by:

x± zα
2

(
σ√
n

)
⇐⇒

[
x− zα

2

(
σ√
n

)
, x+ zα

2

(
σ√
n

)]
where x is the sample mean estimate based on observed samples, and zα

2
is called the z-value or z-score,

which satisfies the property that the area to its right under the standard normal curve is α
2 .

However, since x here is a single estimate with a fixed value rather than a random variable, we cannot
calculate its probability.

We can derive the probability function for finding such an interval. Since what we are trying to find is
the interval such that the actual mean µ will fall into an interval around the sample mean X, we can
define ε as the margin of error, controlling the width of the interval, where ε = zα

2
. Then we have:

P
(
X − ε ≤ µ ≤ X + ε

)
= 1− α

P
(
−ε ≤ X − µ ≤ ε

)
= 1− α

P
(
−ε ≤ σ√

n
N (0, 1) ≤ ε

)
= 1− α

P
(
−ε

√
n

σ
≤ N (0, 1) ≤ ε

√
n

σ

)
= 1− α

P
(
−zα

2

√
n

σ
≤ N (0, 1) ≤ zα

2

√
n

σ

)
= 1− α

Alternatively, we can also express this as:

P

(
−zα

2
≤ X − µ

σ√
n

≤ zα
2

)
= 1− α

P
(
−zα

2
· σ√

n
≤ X − µ ≤ zα

2
· σ√

n

)
= 1− α

P
(
X − zα

2

σ√
n
≤ µ ≤ X + zα

2

σ√
n

)
= 1− α

Note that X is a random variable, and this function describes a random interval centered at X that has
a (1 − α) probability of containing the population mean µ before a sample is drawn. Once the specific
sample is observed, the sample mean x becomes fixed, and the interval becomes:[

x− zα
2

σ√
n
, x+ zα

2

σ√
n

]
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If we repeatedly sampled and computed intervals this way, 100(1−α)% of those intervals would contain
µ.

We have talked about the case that σ2 is known. Now, suppose that σ2 is unknown, but n is large
(n ≥ 30), then a confidence interval for the mean can also be found by:

x± zα
2

(
s√
n

)
⇐⇒

[
x− zα

2

(
s√
n

)
, x+ zα

2

(
s√
n

)]
where s2 is an unbiased sample standard deviation estimate based on observed samples:

s2 =

∑n
i=1(Xi −X)2

n− 1

Example. Given a 95% confidence interval for the mean from 30 N
(
µ,
(
1
2

)2) samples.

Solution: As 1− α = 95%, thus α
2 = 2.5% = 0.025.

Since X = X1+···+Xn

n is a normal random variable, we have

X ∼ Normal

(
µ,

(
1

2
√
30

)2
)

Given σ = 1
2 , we have

P
(
X − zα

2

σ√
n
≤ µ ≤ X + zα

2

σ√
n

)
= 1− α

P
(
X − z0.025

1
2√
30

≤ µ ≤ X + z0.025

1
2√
30

)
= 95%

From Z-table, we have z0.025 = 1.96, then we have

P
(
X − z0.025

1
2√
30

≤ µ ≤ X + z0.025

1
2√
30

)
= 95%

P
(
X − 1.96

1
2√
30

≤ µ ≤ X + 1.96
1
2√
30

)
= 95%

P
(
X − 0.18 ≤ µ ≤ X + 0.18

)
= 95%

Then, we can say that we are 95% confident that the actual mean will fall into this interval.

Remark. For a given sample, we can find x. However, the change of x will not affect the width
of the interval but only shift it to the left or right. Only the change of size n will change the
interval.

Example. How many N (µ, 252) samples are needed for a 95% confidence with width = 10 intervals?

Solution: As 1− α = 95%, thus α
2 = 2.5% = 0.025.

Then the corresponding confidence interval:[
x− zα

2

σ√
n
, x+ zα

2

σ√
n

]
=⇒

[
x− z0.025

σ√
n
, x+ z0.025

σ√
n

]
Then we have

2× z0.025
σ√
n
= 10 =⇒ 2× 1.96

25√
n
= 10

n =

(
2× 1.96× 25

10

)2

≈ 96
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Remark. We can also use the probability function to do the calculation:

P
(
X − ε ≤ µ ≤ X + ε

)
= P

(
−ε ≤ X − µ ≤ ε

)
= P

(
−ε ≤ σ√

n
N (0, 1) ≤ ε

)
= P

(
−ε

√
n

σ
≤ N (0, 1) ≤ ε

√
n

σ

)
ε
√
n

σ
= 1.96

5×√
n

25
= 1.96

n =

(
25× 1.96

5

)2

= 96

Example. 34 out of 100 Bernoulli(p) samples came out positive. Given a 95% confidence interval,
what are the upper and lower limits?

Solution: As 1− α = 95%, thus α
2 = 2.5% = 0.025.

Since it is a Bernoulli random variable, we have

x = p̂ =
34

100
= 0.34

Although σ is unknown, since n = 100 is large, we can use s =
√
p̂(1− p̂) ≈ 0.47 to approximate σ:[

x− zα
2

s√
n
, x+ zα

2

s√
n

]
=⇒

[
x− z0.025

s√
n
, x+ z0.025

s√
n

]
Then we have[

x− z0.025
s√
n
, x+ z0.025

s√
n

]
=

[
0.34− 1.96× 0.47

10
, 0.34 + 1.96× 0.47

10

]
= [0.248, 0.432]

3.3 One Sided Confidence Intervals

Provides a bound for a population parameter with a specified confidence level (1 − α). A one-sided
interval addresses situations where only one direction is of interest.

3.3.1 Lower One-sided Confidence Interval

For the lower one-sided confidence interval, we have [θ̂min
n ,+∞], where we are confident that θ is at least

as large as θ̂min
n .

To find θ̂min
n such that P(µ ≥ θ̂min

n ) = 1− α, we proceed similarly to the two-sided case. However, here
we focus only on one side, which leads to:

P

(
X − µ

σ√
n

≤ zα

)
= 1− α =⇒ P

(
µ ≥ X − zα

σ√
n

)
= 1− α

Therefore, given a specific sample mean x, the lower one-sided confidence interval is:[
x− zα

σ√
n
,+∞

]
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3.3.2 Upper One-sided Confidence Interval

For the upper one-sided confidence interval, we have [−∞, θ̂max
n ], where we are confident that θ is at

most as large as θ̂max
n .

To find θ̂max
n such that P(µ ≤ θ̂max

n ) = 1 − α, we follow a similar approach, focusing on just one side of
the distribution:

P

(
X − µ

σ√
n

≥ zα

)
= 1− α =⇒ P

(
µ ≤ X + zα

σ√
n

)
= 1− α

Therefore, given a specific sample mean x, the upper one-sided confidence interval is:[
−∞, x+ zα

σ√
n

]

3.4 Student’s t-distribution
Remark. Some discussions in this section are not included in the lecture notes of ENGG2780 but
are helpful for understanding. They are marked with ⊛.

Previously, we talked about the case when σ2 is known, and with a large sample n, we can find the
(1−α) confidence interval for the mean µ. Now, if we have an unknown σ2 and a large n (n ≥ 30), then
we have a 1− α confidence interval for the mean µ:

x± zα
2

s√
n
, s2 =

∑n
i=1(Xi −X)2

n− 1
.

Intuition. As σ2 is unknown, we cannot utilize Z = X−µ
σ√
n

∼ N (0, 1) to construct the confidence

interval. Instead, we need to analyze the distribution of X−µ
S√
n

, where the unbiased sample standard

deviation S is a random variable.

Here we consider X1, · · · , Xn as independent random variables with a large n.

Case I: For Xi ∼ N (µ, σ2), we have

X − µ
S√
n

∼ t(n− 1)
n→∞−→ N (0, 1)

Then we have
X − µ

S√
n

∼ N (0, 1) ⇒ P

(
−zα

2
≤ X − µ

S√
n

≤ zα
2

)
= 1− α

Given a specific sample mean and standard deviation x, s, the interval becomes fixed.

Case II: If the distribution of Xi is unknown, then based on the Central Limit Theorem, we have

√
n(X − µ)

d−→ N (0, σ2).

As X−µ
σ/

√
n
=

√
n(X−µ)

σ ∼ t(n− 1), we have

S2 =
1

n− 1

n∑
i=1

(Xi −X)2
P−→ σ2

Then, from Slutsky’s Theorem, we have

X − µ
S√
n

=

√
n(X − µ)

S
= Z ∼ N (0, 1)
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As n is large, the distribution of X−µ
S√
n

is assumed to be approximated by N (0, 1).

However, when σ is unknown and we have a small n, how can we find the confidence interval? This
brings us to the Student’s t-distribution.

3.4.1 Chi-squared Random Variable

We first take a look at some normal algebra.

Suppose we have X1 ∼ Normal(µ1, σ1) and X2 ∼ Normal(µ2, σ2), where X1, X2 are independent. Then,
we have X1 +X2 ∼ Normal(µ1 + µ2,

√
σ2
1 + σ2

2) and X1 −X2 ∼ Normal(µ1 − µ2,
√
σ2
1 + σ2

2).

Then, the adjusted sample variance S2 of two independent Normal(µ, σ) samples is

S2 = (X1 −X)2 + (X2 −X)2

= (X1 −
X1 +X2

2
)2 + (X2 −

X1 +X2

2
)2

=

(
X1 −X2

2

)2

+

(
X1 −X2

2

)2

=
1

2
(X1 −X2)

2

=
1

2
Normal(0,

√
2σ)2 = Normal(0, σ2).

Now, consider a sample X1, X2, . . . , Xn drawn from a normal distribution:

Xi ∼ Normal(µ, σ2), for i = 1, 2, . . . , n.

The sample mean is given by:

X =
1

n

n∑
i=1

Xi.

The sample variance is defined as:

S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

We can then find
E[Xi −X] = E[Xi]− E[X] = µ− µ = 0

Var(Xi −X) =

(
1− 1

n

)2

σ2 +
1

n2
σ2 + · · ·+ 1

n2
σ2 =

n− 1

n
σ2.

Then, we have

Xi −X ∼ Normal
(
0,

n− 1

n
σ2

)
.

The sum of squares of these normal deviations forms
a chi-squared distributed random variable with n−1
degrees of freedom:

(n− 1)S2

σ2
∼ χ2(n− 1).

If X1, · · · , Xn are independent standard normal ran-
dom variables N (0, 1), then we have

(X2
1 + · · ·+X2

n) ∼ χ2(n),

where n is the degrees of freedom (df), and it has
the probability density function (PDF)

f(x) ∝ x
n
2 −1e−

x
2

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5 k = 1
k = 2
k = 3
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Remark. Note that although Xi are independent Normal(µ, σ), the variables Xi −X are not inde-
pendent. Suppose X1 −X = z1, X2 −X = z2, then

z1 + z2 + · · ·+ zn = (X1 +X2 + · · ·+Xn)− nX = 0.

Theorem 3.4.1. If X1, · · · , Xn are independent random variables following N (µ, 1), then

(X1 −X)2 + · · ·+ (Xn −X)2 ∼ χ2(n− 1),

where X = 1
n

∑n
i=1 Xi is the sample mean.

Corollary 3.4.1. If X1, · · · , Xn are independent random variables following N (µ, σ2), then

(n− 1)S2

σ2
∼ χ2(n− 1),

where S2 = 1
n−1

∑n
i=1(Xi −X)2 is the sample variance.

⊛ Then, to find the confidence interval for σ, we have

P(z− ≤ χ2(n− 1) ≤ z+) = P(z− ≤ χ2(n− 1) ≤ z+)

= P(z− ≤ (n− 1)S2

σ2
≤ z+)

= P(
(n− 1)S2

z+
≤ σ2 ≤ (n− 1)S2

z−
)

= P(
√

(n− 1)S2

z+
≤ σ ≤

√
(n− 1)S2

z−
)

Now, we can go back to the discussion.

3.4.2 Student’s t Random Variable

Since we consider the case where σ is unknown, we can no longer use the previous method, i.e., X−µ
σ/

√
n
,

to find the confidence interval for the mean. Instead, we use the sample variance S to estimate the
confidence interval. However, in this case, the distribution is no longer normal.

For example, we have

T =
X − µ

S√
n

=
Normal(0, σ√

n
)√

σ2χ2(n− 1)

n(n− 1)

=
Normal(0, 1)√

χ2(n− 1)

(n− 1)

Since Normal(0, 1) and
√

χ2(n−1)
n−1 are independent, we can define a random variable for this distribution.

This is what we call the Student’s t-distribution.

If X1, · · · , Xn are independent random variables with distribution N (µ, σ2), then a (1 − α)-confidence
interval for the mean µ is given by

x± tα
2

s√
n
,

where tα
2

is the t-score such that the area to the right of it under the t-distribution curve with n − 1
degrees of freedom is α

2 .

Consider two independent random variables Y and Z, such that Y has the χ2 distribution with n degrees
of freedom (χ2(n)) and Z has the standard normal distribution N (0, 1). Suppose a random variable T
is defined as

T =
Z√
Y
n

=
N (0, 1)√

χ2(n)
n

.

The distribution of T is called the t-distribution or Student’s t-distribution with n−1 degrees of freedom.
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Theorem 3.4.2. If X1, · · · , Xn are independent random variables following N (µ, σ2), regardless of
whether n is large or not, then we have

T =
X − µ

S√
n

∼ t(n− 1),

where X = 1
n

∑n
i=1 Xi is the sample mean, and S2 = 1

n−1

∑n
i=1(Xi −X)2 is the sample variance.

Proof. As X1, · · · , Xn are independent N (µ, σ2) random variables, we have

Z =
X − µ

σ√
n

∼ N (0, 1) and
(n− 1)S2

σ2
∼ χ2(n− 1)

Denote Y =
(n− 1)S2

σ2
∼ χ2(n− 1). Then,

T =
Z√
Y

n−1

∼ t(n− 1) ⇐⇒ T =

X−µ
σ√
n

S
σ

=
(X − µ)

S√
n

∼ t(n− 1)

This holds true when Z and Y are independent.

To show that Z and Y are independent, we prove that X and S2 are independent. Since

S2 =
1

n− 1

n∑
i=1

(Xi −X)2,

it suffices to show that X and Xi −X are independent. We know that

X ∼ N
(
µ,

σ2

n

)
and (Xi −X) ∼ N

(
0,

n− 1

n
σ2

)
.

We now calculate the covariance between X and Xi −X:

Cov(X,Xi −X) = Cov(X,Xi)− Cov(X,X)

=
1

n
Cov(Xi, Xi)− Cov(X,X)

=
σ2

n
− σ2

n
= 0.

Thus, X and Xi −X are independent, and therefore, Z and Y are independent. ■

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4 k = 1
k = 2
k = 5
k = 8

As shown in the graph, we can see that with a larger n, the distribution becomes more similar to the
standard normal distribution N (0, 1), since the sample variance becomes a more accurate estimate of
the population variance:

t(n) =
N (0, 1)√

χ2(n)
n

n→∞
=⇒ N (0, 1)
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Now, if X1, · · · , Xn are independent N (µ, σ2), then a (1− α)-confidence interval for the mean µ is

x± tα
2

s√
n

where the t-value gives us the area to the right of it under the t-distribution curve with degrees of freedom
n− 1 equal to α

2 .

Proof. Given X1, · · · , Xn are independent random variables following N (µ, σ2), where σ2 is un-
known, and n is small (n < 30), we have

T =
X − µ

S√
n

∼ t(n− 1).

Therefore, the probability that T lies between the critical values ±tα
2

is

P

(
−tα

2
≤ X − µ

S√
n

≤ tα
2

)
= 1− α.

By multiplying through by S√
n
, we get

P
(
−tα

2

S√
n
≤ X − µ ≤ tα

2

S√
n

)
= 1− α.

Finally, solving for µ, we obtain the confidence interval for µ:

P
(
X − tα

2

S√
n
≤ µ ≤ X + tα

2

S√
n

)
= 1− α.

■

Example. 5 random athletes are 152, 163, 188, 201, and 192 cm tall. Given a 95% confidence
interval for µ.

Solution: Here we have n = 5, so the degrees of freedom are n− 1 = 4.

x =
152 + 163 + 188 + 201 + 192

5
= 179.2

s =

√∑5
i=1(xi − 179.2)2

4
= 20.73

For α = 5%, we have α
2 = 2.5% = 0.025 ⇒ tα

2
= 2.78.

x± tα
2

s√
n
= 179.2± 2.78× 20.73√

5
= 179.2± 25.78 ⇒ [153.43, 204.97]

3.4.3 One-sided Confidence Interval

Consider X1, · · · , Xn as independent N (µ, σ2) random variables, where σ2 is unknown and n < 30. We
have:

Lower one-sided: Find θ̂min
n such that P(µ ≥ θ̂min

n ) = 1− α

P(T ≤ tα) = P

(
X − µ

S√
n

≤ tα

)
= 1− α =⇒ P

(
µ ≥ X − tα

S√
n

)
= 1− α

Given specific values of x and s, we have
[x− tα,+∞]
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Upper one-sided: Find θ̂max
n such that P(µ ≤ θ̂max

n ) = 1− α

P(T ≥ −tα) = P

(
X − µ

S√
n

≥ tα

)
= 1− α =⇒ P

(
µ ≤ X + tα

S√
n

)
= 1− α

Given specific values of x and s, we have
[−∞, x+ tα]

3.5 Summary

In summary, if X1, · · · , Xn are independent samples with the same PMF or PDF, for a (1−α)-confidence
interval, we consider the following cases:

1. Known σ2

If n is large, i.e. n ≥ 30, or if n < 30 with the PDF N (µ, σ2), we have:

Z =
X − µ

σ√
n

∼ N (0, 1), x± zα
2

σ√
n

2. Unknown σ2

Case 1: If n is large, then we have:

σ ≈ s, Z =
X − µ

s√
n

∼ N (0, 1), x± zα
2

s√
n

Case 2: If n < 30, with the PDF N (µ, σ2), then we have:

T =
X − µ

S√
n

∼ t(n− 1), x± tα
2

s√
n
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Chapter 4

Hypothesis Testing

Previously, we talked about hypothesis testing in the context of Bayesian statistics, where we use it to
check how likely the estimated parameter is to be the actual one given the observed data and a prior.
The same applies to classical statistics, but instead of having a prior, we only have observations.

So, how do we determine how likely the estimated distribution is to be the actual one, or to what extent
it has errors? This is where hypothesis testing comes in.

4.1 Terminology

Before we dive into the context, we first define some terminology.

Recall that in Bayesian statistics, we have a parameter Θ that takes m possible values θ1, θ2, . . . , θm,
and we use Bayesian inference to estimate the most likely value given observed data. Now, we consider
a special case where Θ can take only two values, 0 and 1. This scenario is known as binary hypothesis
testing.

We denote the hypothesis Θ = 0 by H0, called the null hypothesis, which is considered the default
assumption. We denote the hypothesis Θ = 1 by H1, called the alternative hypothesis.

For example, we can claim that a new drug has no effect, which is the default claim H0, while the claim
that "the new drug has an effect" corresponds to the alternative hypothesis H1.

Note that under each hypothesis, the data follows a specific probability distribution. By default, we
assume the sample follows the distribution defined by H0, and hypothesis testing determines whether
there is sufficient evidence to reject H0 in favor of H1.

After observing n independent samples X1, . . . , Xn with the same PMF or PDF, which depends on the
hypothesis, we denote by fX|Θ the PMF or PDF defined by the hypothesis.

A binary decision rule can be represented by two disjoint regions of all possible observations. We have R,
called the rejection region, where hypothesis H0 is rejected if the observed data fall within this region.
Simply put, the samples suggest that the data follow the distribution under hypothesis H1.

The complement Rc is called the acceptance region, where hypothesis H0 is accepted if the observed
data fall within this region. In other words, the data are consistent with the distribution under H0.

For a particular choice of the rejection region, we have two types of errors.

For a Type I error, also known as a false rejection or false positive, we reject hypothesis H0 even though
H0 is true. In other words, the data suggest that it follows H1, while the actual distribution is H0. We
define the probability of a Type I error as:

α(R) = P(X ∈ R|H0).

Similarly, we have a Type II error, also known as a false acceptance or false negative. This occurs
when we accept hypothesis H0 even though H0 is false. In other words, the data suggest that it follows

36



H0, while the actual distribution is H1. We define the probability of a Type II error as:

β(R) = P(X /∈ R|H1).

4.2 Likelihood Ratio

4.2.1 Likelihood Ratio Test

Now, let’s look at an example. Suppose we have a coin that can either be fair (H0) or loaded (H1),
where pH = 3

4 . If we decide that when the number of heads observed is greater than or equal to 14, we
would conclude that it is more likely to be H1.

We can now calculate the error as follows:

P(H1|H0) = P(Binomial(20, 0.5) ≥ 14) = 0.057

P(H0|H1) = P(Binomial(20,
3

4
) ≤ 13) = 0.214

Note that here the Type I error is much smaller than the Type II error, which is desirable, since Type I
errors are usually more costly.

One way to think about it is that the null hypothesis represents the default case, which we only reject if
there is sufficient evidence. However, a Type I error means that even though the null hypothesis is true,
we still reject it. This is not considered a “safe” decision, so we typically aim to minimize the Type I
error, even though doing so may increase the Type II error.

That said, there are cases where a Type II error is more costly—for example, failing to detect a dis-
ease—but such cases are less common. But in general-purpose testing, Type I is treated more seriously
because it’s the one we explicitly control.

However, we still want to make a decision. So how can we ensure that the decision we make is optimal?
One approach is to use the Likelihood Ratio Test.

Suppose X1, · · · , Xn are independent random variables with the same PDF or PMF. Then we define the
likelihood ratio as

L(x1, · · · , xn) =
fX(x1, · · · , xn|H1)

fX(x1, · · · , xn|H0)
.

We use the following general decision rule: we accept H1 (Θ = 1) if L(x1, · · · , xn) > ξ, where ξ > 0 is a
critical threshold. Otherwise, we accept H0 (Θ = 0).

Remark. Notice that in Bayesian statistics, we use the MAP (Maximum A Posteriori) rule, where
the threshold is given by

ξ =
PΘ(θ = 0)

PΘ(θ = 1)
,

and the posterior ratio becomes

fΘ|X(1|x)
fΘ|X(0|x) =

fX|Θ(x|1)PΘ(θ = 1)

fX|Θ(x|0)PΘ(θ = 0)
> 1.

In classical statistics, we use the likelihood ratio test without a prior:

fX(x|H1)

fX(x|H0)
> 1.

For example, given a six-sided die, there are two hypotheses: fair (H0) or loaded (H1), with the following
PMFs:

PX(x|H0) =
1

6
for x = 1, . . . , 6

PX(x|H1) =


1

4
, if x = 1, 2

1

8
, if x = 3, 4, 5, 6
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Given a single roll x of the die, consider the likelihood ratio:

L(x) =


1
4
1
6

=
3

2
, if x = 1, 2

1
8
1
6

=
3

4
, if x = 3, 4, 5, 6

There are three possibilities to consider for the critical threshold ξ:
ξ <

3

4
, Reject H0 for all x

3

4
< ξ <

3

2
, Reject H0 if x = 1, 2; Accept H0 otherwise

ξ >
3

2
, Accept H0 for all x

Then we can compute the probabilities of Type I and Type II errors:

Type I error (false positive):

α(ξ) = P(x ∈ R|H0) =


1, if ξ <

3

4
2

6
=

1

3
, if

3

4
< ξ <

3

2

0, if ξ >
3

2

Type II error (false negative):

β(ξ) = P(x /∈ R|H1) =


0, if ξ <

3

4
4

8
=

1

2
, if

3

4
< ξ <

3

2

1, if ξ >
3

2

Also, as ξ increases, the rejection region becomes smaller. Thus, the probability of false rejection, α(R),
decreases, while the probability of false acceptance, β(R), increases.

Then, how do we choose the trade-off threshold ξ?

One popular approach to choosing ξ is the Likelihood Ratio Test. We first specify a target value α
for the false rejection probability (Type I error). Then, we select a value of ξ such that the false rejection
probability equals α, i.e.,

P(L(x) > ξ|H0) = α.

Once the value X = x is observed, we reject H0 if L(x) > ξ.

Here, α is called the significance level. Typical choices for α are 0.01, 0.05, and 0.10.

Example. A car-jack detector X outputs N (0, 1) if there is no intruder and N (1, 1) if there is one.
When should the alarm activate? How should we choose ξ?

Solution: Let H0 denote “no intruder” and H1 denote “intruder present”. Then, the densities are:

fX(x|H0) =
1√
2π

e−
x2

2 , fX(x|H1) =
1√
2π

e−
(x−1)2

2 .

The likelihood ratio is:

L(x) =
fX(x|H1)

fX(x|H0)
=

e−
(x−1)2

2

e−
x2

2

= e
2x−1

2 .
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Suppose we set the significance level α = 0.025, the probability of a Type I error. Then we solve:

P(L(x) > ξ|H0) = 0.025.

Substituting the likelihood ratio:

P(e
2X−1

2 > ξ|H0) = 0.025,

where X ∼ N (0, 1). Taking logarithms:

P
(
X > ln ξ +

1

2

)
= 0.025.

Using the standard normal quantile z0.975 = 1.96, we solve:

ln ξ +
1

2
= 1.96 =⇒ ln ξ = 1.46 =⇒ ξ = e1.46.

4.2.2 Neyman-Pearson Lemma

Consider a particular choice of ξ in the likelihood ratio test, which results in error probabilities

P(L(x) > ξ | H0) = α and P(L(x) ≤ ξ | H1) = β.

Suppose an alternative test with rejection region R′ satisfies

P(X ∈ R′ | H0) ≤ α,

then we have
P(X /∈ R′ | H1) ≥ β,

with strict inequality
P(X /∈ R′ | H1) > β if P(X ∈ R′ | H0) < α.

This lemma shows that no test exists such that P(X ∈ R′ | H0) = α while P(X /∈ R′ | H1) < β.
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Chapter 5

Composite Hypothesis

5.1 Overview

We talked about binary hypothesis in the previous chapter. However, in real-world settings, hypothesis
testing problems do not always involve two well-specified parameters as alternatives. We still have two
disjoint hypotheses, but they are not as well-specified as in the binary case.

In the previous chapter, we discussed simple hypotheses, where the distribution or the parameters are
completely specified. For example, we have a drug that is either effective or not, giving us H0 = 0
and H1 = 1. However, for composite hypotheses, the distribution or the parameters are not completely
specified.

For example, consider the claim that the average monthly income of residents of a city is more than or
equal to 20,000 dollars. Now we have H0 : µ ≥ 20, 000, while H1 : µ < 20, 000 is not completely specified.

Therefore, we need a more general statistical test of hypothesis. To do this, we first specify the null
hypothesis H0 and complement H1. We then choose a test statistic based on the random samples for
the parameter in the hypotheses. For example, we can choose X as a test statistic for µ.

Then, assuming H0 is true, we look for evidence from observations to support H1. We make a conclusion:
either reject H0 if there is strong evidence from the test that indicates the assumption H0 is true does not
hold, or accept H0 if there is no strong statistical evidence from observations to refute the assumption.

5.2 Composite Hypothesis on Population Mean

Here we consider the composite hypothesis on population mean µ.

There are two categories. The first one is the two-sided test, where we have

H0 : µ = µ0 vs. H1 : µ ̸= µ0

The second category is the one-sided test, where we have

Right-sided: H0 : µ ≤ µ0 vs. H1 : µ > µ0

or
Left-sided: H0 : µ ≥ µ0 vs. H1 : µ < µ0

In the critical value approach, we define a significance level α, which is the largest false rejection proba-
bility we can accept. Then we find the rejection region of H0 such that α = P(H1|H0). We estimate the
sample mean x from the observed data. If x is in the rejection region, then we consider there is strong
statistical evidence to reject H0. Otherwise, we accept H0.
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5.2.1 Two-Sided test

When n ≥ 30, we can have the two-sided test of µ. Suppose X1, · · · , Xn are independent samples with
the same PDF or PMF (µ, σ2, etc.). We assume that H0 : µ = µ0 is true, and we have the test statistic,
which is the sample mean X. The rejection region will then be |X−µ0| ≥ ξ, where ξ > 0. ξ is determined
by solving α = P(H1|H0), then we have

α = P(|X − µ0| ≥ ξ|µ = µ0)

Remark. The further away the sample mean X is from µ0, the stronger the evidence points toward
H1 : µ ̸= µ0.

Then, based on the central limit theorem, assuming H0 is true, as n is large, we have

X ∼ N
(
µ,

σ2

n

)
=⇒ X − µ0

σ/
√
n

∼ N (0, 1)

α = P
(
|X − µ0| ≥ ξ

)
= P

(
|Z| ≥ ξ

σ/
√
n

)
= P

(
|Z| ≥ zα/2

)
Then, when σ is known, given a specific estimate x, if

|x− µ0|
σ/

√
n

≥ zα/2,

we reject H0. Otherwise, we accept it.

When σ is unknown, we approximate µ with s. Given a specific estimate x, if

|x− µ0|
s/
√
n

≥ zα/2,

we again reject H0. Otherwise, we accept it.

However, when n < 30, as n is small, CLT is not applicable here. But if X1, · · · , Xn ∼ N (µ, σ2), then
we still have

X ∼ N
(
µ,

σ2

n

)
.

Then, when σ is known, we have

Z =
X − µ0

σ/
√
n

∼ N (0, 1)

When σ is unknown, we have

T =
X − µ0

S/
√
n

∼ t(n− 1)

Then, from the same formula, we have

α = P
(
|X − µ0| ≥ ξ

)
= P

(
|T | ≥ ξ

S/
√
n

)
= P

(
|T | ≥ tα/2

)
Given a specific estimate x, if

|x− µ0|
s/
√
n

≥ tα/2,

then we reject H0; otherwise, we accept it.

Example. The average temperature of Hong Kong in February is 18◦C. Has this year been unusual?
Assume temperature in February follows N (µ, σ2) and σ = 3◦C. Suppose α = 0.05.

Day 1 6 11 16 21 26

Temp (◦C) 15 15 19 18 8 17
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Solution: Here we have H0 : µ = 18, H1 : µ ̸= 18.

Z =
X − µ0

σ/
√
n

∼ N (0, 1)

By calculation, we have

x =
15 + 15 + 19 + 18 + 8 + 17

6
= 15.33, µ0 = 18

Then,
|x− µ0|
σ/

√
n

=
|15.33− 18|

3/
√
6

≈ 2.18 > z0.025 = 1.96

Thus, we reject H0.

However, if σ is unknown, we have

s2 =
(15− 15.33)2 + · · ·+ (17− 15.33)2

6− 1
≈ 15.47, s ≈ 3.93

Then,
|x− µ0|
s/
√
n

=
|15.33− 18|
3.93/

√
6

≈ 1.71 < t0.025 ≈ 2.57

Thus, we accept H0.

5.2.2 One-Sided Test

In category II, we have one-sided tests, where

Right-sided: H0 : µ ≤ µ0 vs. H1 : µ > µ0

or
Left-sided: H0 : µ ≥ µ0 vs. H1 : µ < µ0

We can transform these hypotheses as

Right-sided: H0 : µ = µ0 vs. H1 : µ > µ0

or
Left-sided: H0 : µ = µ0 vs. H1 : µ < µ0

After transformation, H0 : µ = µ0 is rejected only if there is strong evidence to support H1 : µ > µ0. In
this case, we also reject H0 : µ ≤ µ0. H0 : µ = µ0 is not rejected only if there is no strong evidence to
support H1 : µ > µ0. In this case, H0 : µ ≤ µ0 should not be rejected either.

We can apply the same approach by assuming H0 is true, and then setting the false rejection probability
α to find the rejection region for H0. Then we have

α = P(H1|H0 : µ = µ0) ≥ P(H1|H0 : µ ≤ µ0)

Right-Sided Test

For a right-sided test of µ, we have

H0 : µ = µ0 vs. H1 : µ > µ0

Here we set
α = P(X − µ0 ≥ ξ|µ = µ0)

When n ≥ 30, based on the CLT and assuming H0 is true, we have

X ∼ N
(
µ,

σ2

n

)
=⇒ Z =

X − µ0

σ/
√
n

∼ N (0, 1)
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α = P
(
X − µ0 ≥ ξ|µ = µ0

)
= P

(
Z ≥ ξ

σ/
√
n

)
= P (Z ≥ zα)

Same as before, when σ is known, given a specific estimate x, if

x− µ0

σ/
√
n

≥ zα,

we reject H0; otherwise, we accept it.

When σ is unknown, we approximate σ with s. Given a specific estimate x, if

x− µ0

s/
√
n

≥ zα,

we reject H0; otherwise, we accept it.

When n < 30, since the sample size is small, the CLT is not applicable. But if X1, · · · , Xn ∼ N (µ, σ2),
then we still have

X ∼ N
(
µ,

σ2

n

)
Then, when σ is known, we have

Z =
X − µ0

σ/
√
n

∼ N (0, 1)

When σ is unknown, we have

T =
X − µ0

S/
√
n

∼ t(n− 1)

Then, given a specific estimate x, if

x− µ0

σ/
√
n

≥ zα or
x− µ0

s/
√
n

≥ tα,

then we reject H0; otherwise, we accept it.

Left-Sided Test

For a left-sided test of µ, we have

H0 : µ = µ0 vs. H1 : µ < µ0

Here we set
α = P(X − µ0 ≤ ξ|µ = µ0)

When n ≥ 30 and σ is known, given a specific estimate x, if

x− µ0

σ/
√
n

≤ −zα,

we reject H0; otherwise, we accept it.

When σ is unknown, we approximate it with s. If

x− µ0

s/
√
n

≤ −zα,

we reject H0; otherwise, we accept it.

When n < 30, if X1, · · · , Xn ∼ N (µ, σ2), and σ is known, then if

x− µ0

σ/
√
n

≤ −zα or
x− µ0

s/
√
n

≤ −tα,

we reject H0; otherwise, we accept it.
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Example. The average temperature of Hong Kong in February is 18◦C. Has this year been colder?
Assume temperature in February follows N (µ, σ2) and σ = 3◦C. Suppose α = 0.05.

Day 1 6 11 16 21 26

Temp (◦C) 15 15 19 18 8 17

Solution: Here we have H0 : µ = 18, H1 : µ ̸= 18.

Z =
X − µ0

σ/
√
n

∼ N (0, 1)

By calculation, we have

x =
15 + 15 + 19 + 18 + 8 + 17

6
= 15.33, µ0 = 18

Then,
x− µ0

σ/
√
n

=
15.33− 18

3/
√
6

≈ −2.18 < −z0.05 ≈ −1.645

Thus, we reject H0.

However, if σ is unknown, we have

s2 =
(15− 15.33)2 + · · ·+ (17− 15.33)2

6− 1
≈ 15.47, s ≈ 3.93

Then,
x− µ0

s/
√
n

=
15.33− 18

3.93/
√
6

≈ −1.71 > −t0.05 ≈ −2.015

Thus, we accept H0.

5.3 The p-value

The p-value is the smallest probability of committing a type I error for which the null hypothesis H0

would be rejected, given a specific test statistic. Consider the two-sided hypothesis test:

H0 : µ = µ0 vs. H1 : µ ̸= µ0,

where
α = P(X ∈ R | µ = µ0), R =

{
X

∣∣∣∣ ∣∣X − µ0

∣∣ ≥ ξ

}
.

Given a specific observation x, we reject H0 if |x− µ0| ≥ ξ. However, instead of using a fixed rejection
threshold ξ, we aim to compute the smallest significance level α for which H0 would be rejected—this
is the p-value. A smaller ξ enlarges the rejection region R, increasing α, while a larger ξ shrinks R,
decreasing α. Thus, the smallest possible rejection region consistent with the observed x is:

R =

{
X

∣∣∣∣ ∣∣X − µ0

∣∣ ≥ |x− µ0|
}
,

and the p-value is given by
P
(∣∣X − µ0

∣∣ ≥ |x− µ0|
∣∣ µ = µ0

)
.

For large sample sizes (n ≥ 30) and known σ, the test statistic

Z =
X − µ0

σ/
√
n

CHAPTER 5. COMPOSITE HYPOTHESIS 44



follows a standard normal distribution, so the p-value becomes

P
(
|Z| ≥

∣∣∣∣x− µ0

σ/
√
n

∣∣∣∣) = P
(
Z ≥

∣∣∣∣x− µ0

σ/
√
n

∣∣∣∣)+ P
(
Z ≤ −

∣∣∣∣x− µ0

σ/
√
n

∣∣∣∣) .

If σ is unknown, we estimate it using the sample standard deviation s, and approximate:

P
(
|Z| ≥

∣∣∣∣x− µ0

s/
√
n

∣∣∣∣) ≈ P
(
Z ≥

∣∣∣∣x− µ0

s/
√
n

∣∣∣∣)+ P
(
Z ≤ −

∣∣∣∣x− µ0

s/
√
n

∣∣∣∣) .

For a right-tailed test:
H0 : µ = µ0 vs. H1 : µ > µ0,

we compute:

P
(
X − µ0 ≥ x− µ0

∣∣ µ = µ0

)
= P

(
Z ≥ x− µ0

σ/
√
n

)
︸ ︷︷ ︸

σ known

≈ P
(
Z ≥ x− µ0

s/
√
n

)
︸ ︷︷ ︸

σ unknown

.

For a left-tailed test:
H0 : µ = µ0 vs. H1 : µ < µ0,

we compute:

P
(
X − µ0 ≤ x− µ0

∣∣ µ = µ0

)
= P

(
Z ≤ x− µ0

σ/
√
n

)
︸ ︷︷ ︸

σ known

≈ P
(
Z ≤ x− µ0

s/
√
n

)
︸ ︷︷ ︸

σ unknown

.

Now suppose X1, . . . , Xn are i.i.d. normal random variables, and n < 30. Then X is normally distributed,
and we proceed as follows:

For the two-sided test:
H0 : µ = µ0 vs. H1 : µ ̸= µ0,

when σ is known:
P
(
|Z| ≥

∣∣∣∣x− µ0

σ/
√
n

∣∣∣∣) = P (Z ≥ |·|) + P (Z ≤ − |·|) .

When σ is unknown, we instead use the t-distribution:

P
(
|T | ≥

∣∣∣∣x− µ0

s/
√
n

∣∣∣∣) = P (T ≥ |·|) + P (T ≤ − |·|) ,

where T ∼ tn−1.

For the one-sided tests with small n:

Right-tailed:

P
(
X − µ0 ≥ x− µ0

∣∣ µ = µ0

)
= P

(
Z ≥ x− µ0

σ/
√
n

)
︸ ︷︷ ︸

σ known

≈ P
(
T ≥ x− µ0

s/
√
n

)
︸ ︷︷ ︸

σ unknown

.

Left-tailed:

P
(
X − µ0 ≤ x− µ0

∣∣ µ = µ0

)
= P

(
Z ≤ x− µ0

σ/
√
n

)
︸ ︷︷ ︸

σ known

≈ P
(
T ≤ x− µ0

s/
√
n

)
︸ ︷︷ ︸

σ unknown

.

We can then use the p-value approach to conduct a statistical test. Assume that H0 is true. We estimate
the sample mean x from the observed data, compute the corresponding p-value, and compare it with a
predefined significance level α. If the p-value is smaller than α, we reject H0; otherwise, we fail to reject
H0.
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Example. The average temperature of Hong Kong in February is 18◦C. Has this year been unusual?
Has this year been colder (assume σ unknown)? Assume temperature in February follows N (µ, σ2)
and σ = 3◦C. Suppose α = 0.05.

Day 1 6 11 16 21 26

Temp (◦C) 15 15 19 18 8 17

Solution: Here we have H0 : µ = 18, H1 : µ ̸= 18.

Z =
X − µ0

σ/
√
n

∼ N (0, 1)

By calculation, we have
x− µ0

σ/
√
n

=
15.33− 18

3/
√
6

≈ 2.18

p-value = P
(
Z ≥

∣∣∣∣x− µ0

σ/
√
n

∣∣∣∣)+ P
(
Z ≤ −

∣∣∣∣x− µ0

σ/
√
n

∣∣∣∣)
= P(Z ≥ 2.18) + P(Z ≤ −2.18)

= (1− 0.9854) + (1− 0.9854)

= 0.0292

< α = 0.05

Thus, we reject H0.

If σ is unknown, for H0 : µ = 18, H1 : µ < 18, we have

s2 =
(15− 15.33)2 + · · ·+ (17− 15.33)2

6− 1
≈ 15.47, s ≈ 3.93

x− µ0

s/
√
n

=
15.33− 18

3.93/
√
6

≈ −1.71

p-value = P
(
T ≤ x− µ0

s/
√
n

)
= P(T > 1.71) = 0.07 > α = 0.05

Thus, we accept H0.
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Chapter 6

Comparing Population

Suppose we want to explore whether male and female college students have different driving behaviors
in terms of the mean fastest driving speed. Based on a survey of 18 male students and 20 female
students, we find that the mean fastest speeds driven by male and female students are 105 kph and 90
kph, respectively. Can we claim that the mean fastest speed driven by male college students is different
from that of female college students? Or, more specifically, can we claim that the mean fastest speed
driven by male students is faster than that of female students?

This requires a different technique, which will be introduced in this chapter.

Suppose X1, · · · , Xnx
are independent random variables with common mean µx and variance σ2

x, and
Y1, · · · , Yny

are independent with common mean µy and variance σ2
y. We also assume that the Xi’s and

Yi’s are mutually independent.

Suppose nx, ny ≥ 30, and we are testing at a significance level α. Then, as discussed in the previous
chapter, we may consider:

Two-sided test:
H0 : µx = µy vs. H1 : µx ̸= µy

One-sided tests:
Right-sided: H0 : µx = µy vs. H1 : µx > µy

Left-sided: H0 : µx = µy vs. H1 : µx < µy

We can also rewrite these hypotheses in terms of the difference in means:

H0 : µx − µy = 0 vs. H1 : µx − µy ̸= 0

By the Central Limit Theorem (CLT), we have:

X ∼ N
(
µx,

σ2
x

nx

)
, Y ∼ N

(
µy,

σ2
y

ny

)
=⇒ X − Y ∼ N

(
µx − µy,

σ2
x

nx
+

σ2
y

ny

)

Assuming H0 : µx − µy = 0 is true, then the test statistic is:

Z =
(X − Y )− (µx − µy)

σD
=

X − Y

σD
∼ N (0, 1) =⇒ σD =

√
σ2
x

nx
+

σ2
y

ny

Then, we can proceed using the p-value approach or rejection region approach as before.

Critical Value Approach

α = P
(∣∣(X − Y

)
− 0
∣∣ ≥ ξ

)
= P

(∣∣∣∣X − Y

σD

∣∣∣∣ ≥ ξ

σD

)
= P

(
|Z| ≥ zα

2

)
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When σx and σy are known, and given observed sample means x and y, if∣∣∣∣x− y

σD

∣∣∣∣ ≥ zα
2
,

then we reject H0; otherwise, we fail to reject H0.

When σx and σy are unknown, we approximate them with the sample standard deviations sx and sy. If∣∣∣∣x− y

sD

∣∣∣∣ ≥ zα
2
,

then we reject H0; otherwise, we fail to reject it.

Note that

sD =

√
s2x
nx

+
s2y
ny

p-Value Approach

Given specific values x and y, the p-value is computed as

P
(
|Z| ≥

∣∣∣∣x− y

σD

∣∣∣∣) = P
(
Z ≥

∣∣∣∣x− y

σD

∣∣∣∣)+ P
(
Z ≤ −

∣∣∣∣x− y

σD

∣∣∣∣) .

If σ is unknown, we estimate it using the sample standard deviations sx and sy, and approximate:

P
(
|Z| ≥

∣∣∣∣x− y

sD

∣∣∣∣) = P
(
Z ≥

∣∣∣∣x− y

sD

∣∣∣∣)+ P
(
Z ≤ −

∣∣∣∣x− y

sD

∣∣∣∣) .

If the p-value is smaller than α, we reject H0; otherwise, we fail to reject H0.

As in the previous chapter, we consider the case where nx, ny < 30. If both Xi and Yi are normally
distributed and σ2

x, σ2
y are known, then under H0 : µx − µy = 0, we have:

X ∼ N
(
µx,

σ2
x

nx

)
, Y ∼ N

(
µy,

σ2
y

ny

)
⇒ X − Y ∼ N

(
µx − µy,

σ2
x

nx
+

σ2
y

ny

)

Z =
X − Y

σD
∼ N (0, 1), where σD =

√
σ2
x

nx
+

σ2
y

ny

Given specific x and y, if ∣∣∣∣x− y

σD

∣∣∣∣ ≥ zα
2
,

then we reject H0; otherwise, we fail to reject it.

Suppose X1, . . . , Xnx ∼ N (µx, σ
2), and Y1, . . . , Yny ∼ N (µy, σ

2), with mutually independent samples,
and σ2 unknown but equal. For nx, ny < 30, we have:

T =
(X − Y )− (µx − µy)

SD

√
1
nx

+ 1
ny

∼ t(nx + ny − 2)

where the pooled variance is given by:

S2
D =

(nx − 1)S2
x + (ny − 1)S2

y

nx + ny − 2

and S2
x, S2

y are the unbiased sample variances.

Assuming H0 : µx − µy = 0, we have:

α = P
(∣∣X − Y

∣∣ ≥ ξ
)
= P

|T | ≥ ξ

SD

√
1
nx

+ 1
ny

 = P
(
|T | ≥ tα

2

)
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Given specific values x and y, if
|x− y|

SD

√
1
nx

+ 1
ny

≥ tα
2
,

then we reject H0; otherwise, we fail to reject H0.

We also consider the one-sided case. Suppose X1, · · · , Xnx
are independent random variables with

common mean µx and variance σ2
x, and Y1, · · · , Yny

are independent with common mean µy and variance
σ2
y. We also assume that the Xi’s and Yi’s are mutually independent. Consider the following:

Right-sided: H0 : µx = µy vs. H1 : µx > µy =⇒ H0 : µx − µy = 0 vs. H1 : µx − µy > 0

For large nx, ny ≥ 30 or nx, ny < 30 with normal PDF and known σx, σy, we can use the critical value
zα. That is, given specific x and y, if

x− y

σD
≥ zα

2
,

then we reject H0; otherwise, we fail to reject it. Here we have

σD =

√
σ2
x

nx
+

σ2
y

ny
.

If σx, σy are unknown, then they are replaced by s2x, s
2
y.

We can also use the p-value approach, where

p-value = P
(
Z ≥ x− y

σD

)
.

For nx, ny < 30 with normal PDF, and unknown σ2
x = σ2

y = σ2, we use the critical value tα. That is,
given specific x, y, if

x− y

SD

√
1
nx

+ 1
ny

≥ tα
2
,

then we reject H0; otherwise, we fail to reject H0.

Here we have the p-value as

P

T ≥ x− y

SD

√
1
nx

+ 1
ny

 ,

where
T ∼ t(nx + ny − 2).

Example. A thermometer reports readings:

Mon 23.5 23.3 21.3 22.1 23.7

Tue 22.8 24.5 23.7

Has the temperature increased? Suppose the readings follow N (µM , σ2) on Monday and N (µT , σ
2)

on Tuesday, and are independent, with σ = 1◦C. Set α = 0.05, and use the p-value approach.

Solution: Consider
H0 : µT − µM = 0 vs. H1 : µT − µM > 0

Denote by Xi the readings on Monday and Yi the readings on Tuesday, where nx = 5, ny = 3, and
the test statistic is Y −X. Then we have

p-value = P
(
Z ≥ y − x

σD

)
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where

σD =

√
σ2
x

nx
+

σ2
y

ny
.

Plugging in x = 22.78, y = 23.67, σ = 1, nx = 5, ny = 3, we have

p-value = P
(
Z ≥ 0.89

0.73

)
≈ P(Z ≥ 1.22) = 0.1112 > α = 0.05

Thus, we do not reject H0.

However, if σ is unknown, we have

T ∼ t(nx + ny − 2) = t(6).

S2
D =

(nx − 1)S2
x + (ny − 1)S2

y

nx + ny − 2
= 0.98

y − x

SD

√
1
nx

+ 1
ny

≈ 0.89

0.98× 0.73
≈ 1.23 < t0.05(6) = 1.94

Again, we do not reject H0.

Remark. The content of paired t test is not covered here.

CHAPTER 6. COMPARING POPULATION 50



Appendix A

Z TABLE

0 Zzα
2−zα

2

α
2

α
2

1− α

P(Z ≤ z)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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Appendix B

Student’s t-Distribution

t

P(T ≥ t)

CI - - 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9%
df/p 0.40 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005

1 0.325 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.289 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.277 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.271 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.267 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.265 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.263 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.262 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.261 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 0.260 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.260 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.259 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.259 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.258 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.258 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.258 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.257 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.257 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.257 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.257 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.257 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.256 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.256 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.256 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.256 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.256 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.256 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.256 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.256 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.256 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
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