
ENGG2440 Discrete mathematics for engineers

Ryan Chan

April 9, 2025



Abstract
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Chapter 1

Mathematical Induction

1.1 Introduction

In mathematics, there are some basic proof techniques that we can apply, including direct proof, proof
by induction, proof by contradiction, and proof by contraposition. For most of these proving methods,
you won’t be learning their reasons or applications, but you will still use them in some simple proving
questions. In this chapter, we will mainly discuss mathematical induction.

Definition 1.1.1 (Proposition). A proposition is a statement that is either true or false.

Definition 1.1.2 (Predicate). A predicate is a proposition whose truth depends on one or more
variables.

1.2 Mathematical Induction

An analogy of the principle of mathematical induction is the game of dominoes. Suppose the dominoes
are lined up properly, so that when one falls, the successive one will also fall. Now by pushing the first
domino, the second will fall; when the second falls, the third will fall; and so on. We can see that all
dominoes will ultimately fall.

The key point is only two steps:

1. the first domino falls;

2. when a domino falls, the next domino falls.

We use the above principle of Mathematical Induction to prove.

Process:

1. Let P (n) be a predicate.

2. (Base Case) Show that P (1) is true.

3. (Inductive Steps) Show that for n = 1, 2, . . ., if P (n) is true, then P (n+ 1) is true.

Example.

P (n) : 1 + 2 + · · ·+ n =
n(n+ 1)

2

1. Base Case

We need to show that P (1) is true.

1 =
(1)(1 + 1)

2
,
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which is obviously true.

2. Inductive Step

For inductive hypothesis, we can assume

1 + 2 + · · ·+ n =
n(n+ 1)

2

Now, to show that P (n+ 1) is true,

L.H.S. = 1 + 2 + · · ·+ n+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
= R.H.S

,

which shows that P (n+ 1) is also true.

Hence, by the principle of MI, we can conclude that P (n) is true for all integers n ≥ 1.

Exercise. Show that for any integer n ≥ 1, n3 − n is divisible by 3.

Note. In inductive step, consider putting a constant q as 3q is divisible by 3.

Exercise. Prove that n3 < 2n for all integers n ≥ 10.

Note. Consider bonding the lower order terms in terms of n3.

1.3 Strong Mathematical Induction

As the name suggests, the method of induction used in this section is "stronger". This is because
assuming only that P (n) is true may be too restrictive, i.e., insufficient to prove the predicate. Thus, in
the inductive step, you may show that P (1), P (2), · · · , P (n) are true, and then prove that P (n + 1) is
true.

Example. The Fibonacci sequence is a sequence of number defined via the following recursion:

Fn = Fn−1 + Fn−2, n ≥ 2

F0 = 0;F1 = 1

Prove that

P (n) : Fn ≤ ϕn−1,where ϕ =
1 +

√
5

2

1. Base Case
F1 = 1 ≤ ϕ0 = 1

F2 = 1 ≤ ϕ1 ≈ 1.618

Thus, P (1) and P (2) hold true, which means P (3) also holds true.

2. Inductive Step
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For inductive hypothesis, we assume

Fk ≤ ϕk−1 for k = 1, 2, . . . , n

Given the Fibonacci sequence
Fn+1 = Fn + Fn−1

By the strong inductive hypothesis, we have

Fn ≤ ϕn−1, Fn−1 ≤ ϕn−2

From the definition of ϕ we have ϕ2 = 1 + ϕ

Hence, we obtain
Fn+1 ≤ ϕn−1 + ϕn−2 = ϕn−2(1 + ϕ) = ϕn

CHAPTER 1. MATHEMATICAL INDUCTION 4



Chapter 2

Summation Techniques

2.1 Summation

When summing numbers with certain patterns, we can use summation notation. For example,

a1 + a2 + · · ·+ an =

n∑
k=1

ak

2.1.1 Distributive Law

Let c be a constant. Then, we can take c out of the summation:∑
k∈K

cak = c
∑
k∈K

ak

Example.

n∑
k=1

2k = 2(1) + 2(2) + 2(3) + · · ·+ 2(n) = 2(1 + 2 + 3 + · · ·+ n) = 2

n∑
k=1

k

2.1.2 Associative Law

We can split the summand as follows:

∑
k∈K

(ak + bK) =
∑
k∈K

ak +
∑
k∈K

bk

Example.
n∑

k=1

(k + k2) = (1 + 12) + (2 + 22) + · · ·+ (n+ n2)

= (1 + 2 + · · ·+ n) + (12 + 22 + · · ·+ n2)

=

n∑
k=1

k +

n∑
k=1

k2
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2.2 Close Form Formula

Close form formula is the formula that does not have the summation index k for a sum by simply writing
it out explicitly. For example,

n∑
k=1

(ak − ak−1)

By expanding the sum, we have

n∑
k=1

(ak − ak−1) = (a1 − a0) + (a2 − a1) + · · ·+ (an − an−1) = an − a0

By cancelling the terms, we get an − a0, which is the close form formula for the summation
∑n

k=1(ak −
ak−1).

2.3 Perturbation Method

It could be difficult to derive the close form formula for some summation. Therefore, we can use the
perturbation method.

For summation

Sn =

n∑
k=1

ak,

we can split off the first term and the last term, then rewrite it as

a1 +

n+1∑
k=2

ak = Sn+1 =

n∑
k=1

ak + an+1

Example (Geometric Sum). Let x be any number. Consider the sum

Sn =

n∑
k=1

xk

x+

n+1∑
k=2

xk = Sn+1 =

n∑
k=1

xk + xn+1

Observe that
n+1∑
k=2

xk = x2 + x3 + · · ·+ xn+1 = x(x+ x2 + · · ·+ xn) = xSn

By substitution, we have
x+ xSn = Sn + xn+1

If x ̸= 1, then we can solve for Sn to get

Sn =
x(1− xn)

1− x

This summation is also called geometric sum.

By applying the perturbation method, we can find the close form formula for some common summation.
Another example is Quadratic Series.
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Example (Quadratic Series). By applying perturbation method to the sum

Sn =

n∑
k=1

k2,

we have

1 +

n+1∑
k=2

k2 = Sn+1 =

n∑
k=1

k2 + (n+ 1)2

Let j = k − 1,
n+1∑
k=2

k2 =

n∑
j=1

(j + 1)2

n∑
j=1

(j + 1)2 =

n∑
j=1

(j2 + 2j + 1)

=

n∑
j=1

j2 + 2

n∑
j=1

j +

n∑
j=1

1

= Sn + 2

n∑
j=1

j + n

Then, we have

1 +

n+1∑
k=2

k2 =

n∑
k=1

k2 + (n+ 1)2

1 + Sn + 2

n∑
j=1

j + n = Sn + (n+ 1)2

n∑
j=1

j =
n(n+ 1)

2

However, we obtain the Euler′s trick here instead. Thus, we may apply the perturbation method
to another sum.

Cn =

n∑
k=1

k3 ⇒ 1 +

n+1∑
k=2

k3 = Cn+1 =

n∑
k=1

k3 + (n+ 1)3

n+1∑
k=2

k3 =

n∑
j=1

(j + 1)3 (By applying j = k − 1)

=

n∑
j=1

j3 + 3

n∑
j=1

j2 + 3

n∑
j=1

j +

n∑
j=1

1

= Cn + 3Sn +
3n(n+ 1)

2
+ n

By substitution, we get

1 + Cn + 3Sn +
3n(n+ 1)

2
+ n = Cn + (n+ 1)3

2 + 6Sn + 3n(n+ 1) + 2n = 2(n+ 1)3

Sn =
2(n+ 1)3 − 2n− 2− 3n(n+ 1)

6

Sn =
(n+ 1)(2(n+ 1)2 − 2− 3n)

6

Sn =
n(n+ 1)(2n+ 1)

6
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There are some shortcut expression that might be used without finding the closed form formula on your
own.

Proposition 2.3.1 (Close form formula). (You can try the perturbation method to find the close form
formula by yourself.)

• Geometric series
n∑

k=0

ark =
a(rn+1 − 1)

r − 1
, r ̸= 1

• Euler′s trick
n∑

k=1

k =
n(n+ 1)

2
or

b∑
k=a

k =
(b− a+ 1)(a+ b)

2

• Quadratic series
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

• Cubic series
n∑

k=1

k3 =
n2(n+ 1)2

4

2.4 Guess-and-Verify method

As the name suggests, we can often guess the closed-form formula. But how can we be certain it’s
correct? This is where mathematical induction comes in handy.

Example.

Sn =

n∑
k=1

k2

Observe that Sn behaves like the sum of terms in a polynomial, allowing us to form an n-term
polynomial. Since n2 is the largest term in Sn, we conclude that Sn ≤ n3

Sn = a+ bn+ cn2 + dn3

1 = S1 = a+ b+ c+ d,

5 = S2 = a+ 2b+ 4c+ 8d,

14 = S3 = a+ 3b+ 9c+ 27d,

30 = S4 = a+ 4b+ 16c+ 64d

Solving for above, we have a = 0, b =
1

6
, c =

1

2
, d =

1

3
.

Sn =
1

6
n+

1

2
n2 +

1

3
n3

After hypothesizing the closed-form formula, we need to use induction to verify its correctness.
The steps are straightforward, and you can try proving it yourself. This process confirms that the
formula is indeed the closed form for the summation.

CHAPTER 2. SUMMATION TECHNIQUES 8



2.5 Multiple Summation

All the summations above use only a single index. For example,

Sn =

n∑
k=1

k2 = 12 + 22 + · · ·+ n2.

In this section, however, we introduce a summation with multiple indices. You can think of a single-index
summation as summing over a 1D array. Extending this idea, a summation with two indices corresponds
to summing over a 2D array. For example,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


To sum up all the terms, we can use

rj = aj1 + aj2 + · · ·+ ajn =

n∑
k=1

ajk

Then, we can rewrite it as

S =

m∑
j=1

rj =

m∑
j=1

n∑
k=1

ajk

We can also interchange the order of summation, which can be very useful for finding the closed-form
formula. For the above summation, it is rather simple, we can simply do the interchange by

m∑
j=1

n∑
k=1

ajk =

n∑
k=1

m∑
j=1

ajk

However, this does not work for all the summation.

Example. Considering

S =

n∑
j=1

n∑
k=j

ajk

To visualize that, we can again use matrix
a11 a12 · · · a1n

a22 · · · a2n
. . .

...
ann


Then, we have

S = a11+a12 + a13+ · · ·+ a1n

+a22 + a23+ · · ·+ a2n

. . .

+ ann

Let

ck = a1k + a2k + · · ·+ ank =

n∑
j=1

ajk,
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we get

S =

n∑
k=1

ck =

n∑
k=1

k∑
j=1

ajk

Remark. Informally, form

S =

n∑
j=1

n∑
k=j

ajk

we have 1 ≤ j ≤ k ≤ n, then we can simply interchange the order by

S =

n∑
k=1

k∑
j=1

ajk

Let’s see another example, n-th harmonic number (Hn).

Example.

Hn =

n∑
k=1

1

k

Again we can visualize it by using matrix
1
1 1/2
1 1/2 1/3

. . .
1 1/2 1/3 · · · 1/n



S =

n∑
j=1

Hj =

n∑
j=1

j∑
k=1

1

k

Since 1 ≤ k ≤ j ≤ n

S =

n∑
j=1

Hj =

n∑
j=1

j∑
k=1

1

k
=

n∑
k=1

n∑
j=k

1

k

Then we get

S =

n∑
k=1

n∑
j=k

1

k

=

n∑
k=1

n− k + 1

k

=

n∑
k=1

n

k
−

n∑
k=1

1 +

n∑
k=1

1

k

= (n+ 1)Hn − n

Definition 2.5.1 (Floor function). Given a real number x, define

⌊x⌋ = greatest integer ≤ x

The symbol ⌊x⌋ is usually read as "the floor of x".
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Exercise. For any real number x, ⌊x⌋ ≤ x ≤ ⌊x⌋+ 1.

Find the closed form formula for

Sn =

n∑
k=1

⌊
√
k⌋

where, for simplicity, we assume that n is a perfect square, i.e., n = a2 for some integer a ≥ 1.

Remark. Consider ⌊x⌋ =
∑x

k=1 1, then how to do the order interchange such that we can get
the following summation

Sn =

a∑
j=1

a2∑
k=j2

1

Let’s look at the last example.

Example. Let n ≤ 1 be an integer and x ̸= 1 be a real number.

S =

n∑
j=1

j∑
k=1

kxj

By interchanging the summation orders yields

S =

n∑
k=1

n∑
j=k

kxj

Notice that for any integer k satisfying 1 ≤ k ≤ n it holds that

n∑
j=k

xj =

n∑
j=1

xj −
k−1∑
j=1

xj =
x− xn+1

1− x
− x− xk

1− x
=

xk − xn+1

1− x

Equivalently,
n∑

j=k

xj =
xk − xn+1

1− x
= xk−1 · x− xn−k+2

1− x
= xk−1 ·

n−k+1∑
j=1

xj

Then we have

S =

n∑
k=1

n∑
j=k

kxj

=

n∑
k=1

k

n∑
j=k

xj

=

n∑
k=1

k · x
k − xn+1

1− x

=
1

1− x
·

n∑
k=1

kxk − xn+1

1− x
·

n∑
k=1

k

=
1

1− x
· x · (nxn+1 − (n+ 1)xn + 1)

(x− 1)2
− xn+1

1− x
· n(n+ 1)

2
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Chapter 3

Recurrences

Sometimes recurrences are closely related to sums. Thus, if we are going to find the closed-form formula,
we can express the sum as a recurrence, then the problem will be comparatively easier.

3.1 Homogeneous Recurrences

Definition 3.1.1 (Linear homogeneous recurrence). A linear homogeneous recurrence relation of de-
gree d with constant coefficients is a recurrence relation of the form

T (n) = a1T (n− 1) + a2T (n− 2) + · · ·+ adT (n− d),

where a1, a2, · · · , ak ∈ R are given constants and ak ̸= 0

To solve for homogeneous recurrences with distinct root, we can use the following procedure:

1. Solve the characteristic equation to get root r1, · · · , rd.
2. If the roots are all distinct, form, the candidate solution

T0(n) = θ1r
n
1 + θ2r

n
2 + · · ·+ θdr

n
d

3. Use the initial conditions on T (1), . . . , T (d) to determine θ1, . . . , θd

Example. {
T (n) = T (n− 1) + 2T (n− 2) for n ≥ 2

T (0) = 2, T (1) = 7

Let T (n) = xn. Then, for characteristic equation, we have

xn = xn−1 + 2xn−2

x2 = x+ 2 (characteristic equation)

The roots are r1 = 2, r2 = −1. Since they are distinct, we can form the candidate solution

T0(n) = θ12
n + θ2(−1)n.

By using the initial conditions, we have

2 = T0(0) = θ1 + θ2

7 = T0(1) = 2θ1 − θ2

Solving above, we have θ1 = 3, θ= − 1. Then, we have

T (n) = 3× 2n − (−1)n

12



However, if the root of the characteristic equation has a multiplicity m ≥ 1, i.e., the root is repeated for
m times, then we have T (n) = nm−1xn. Yet the procedures are the same as solving linear homogeneous
recurrence with distinct roots.

Example. {
T (n) = 2T (n− 1)− T (n− 2) forn ≥ 2,

T (0) = 0, T (1) = 1

Characteristic equation: x2 = 2x− 1.

Solving above we have r1 = 1 with multiplicity m1 = 2. Then we have

T0(n) = θ1(1)
n + nθ2(1)

n = θ1 + nθ2

By using initial conditions, we have

0 = T0(0) = θ

1 = T0(1) = θ1 + θ2

Then, it follows that the solution to the recurrences is given by

T (n) = n

Let’s see another example

Example. {
T (n) = 4T (n− 1)− 5T (n− 2) + 2T (n− 3) forn ≥ 3,

T (0) = 0, T (1) = 1, T (2) = 3.

Characteristic equation: x3 = 4x2 − 5x+ 2

This equation has two distinct roots, r1 = 1, r2 = 2. The multiplicity of r1 is m1 = 2. Hence,

T0(n) = θ1(1)
n + nθ2(1)

n + θ32
n = θ1 + nθ2 + θ32

n

Using initial conditions, we have

0 = T0(0) = θ1 + θ3

1 = T0(1) = θ1 + θ2 + 2θ3

3 = T0(2) = θ1 + 2θ2 + 4θ3

Solving for above, we have

T (n) = −1 + n× 0 + 1× 2n = −1 + 2n

3.2 Non-homogeneous Recurrences

A recurrence relation of the form

T (n) = a1T (n− 1) + a2T (n− 2) + · · ·+ adT (n− d) + f(n)

is called non-homogeneous recurrences.

To solve for non-homogeneous recurrences, we can use the following procedures:

1. Solve the associated linear homogeneous recurrence.

2. Find the particular solution Tp(n) to the linear non-homogeneous recurrence by examining the function
class of f(n).

3. Form the candidate solution T0(n) = Th(n) + Tp(n), and use the initial conditions to find the
parameters in Th(n).
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In general, to solve non-homogeneous recurrence, we can consider the following particular solutions:

f(n) Tp(n)

s x0

n x1n+ x0

n2 x2n
2 + x1n+ x0

sn x0s
n

nsn (x1n+ x0)s
n

Let’s see some examples

Example. Consider the recurrence{
T (n) = 2T (n− 1) + 1 for n ≥ 1

T (1) = 1

Let T0(n) = Th(n) + Tp(n), where Th(n) = 2T (n− 1).

For Th(n), characteristic equation: x = 2, then we have Th(n) = θ2n.

Since f(n) = 1, let Tp(n) = x,
x = 2x+ 1

x = −1

Then, we have
T0(n) = Th(n) + Tp(n) = θ2n − 1

Using the initial conditions, we have

1 = T0(1) = 2θ − 1

This gives θ = 1. Hence, the solution to the recurrence is given by

T (n) = 2n − 1

Example. Consider the recurrence{
T (n) = 5T (n− 1)− 6T (n− 2) + 7n forn ≥ 2

T (0) = 0, T (1) = 1.

Let T0(n) = Th(n) + Tp(n), where Th(n) = 5T (n− 1)− 6T (n− 2).

For Th(n), characteristic equation: x2 = 5x− 6, with r1 = 3, r2 = 2.

Hence, we have Th(n) = θ13
n + θ22

n, which is the homogeneous solution.

Since f(n) = 7n and s = 7 is not a root of the characteristic equation. Let Tp(n) = x07
n (particular

solution),
x07

n = 5x07
n−1 − 6x07

n−2 + 7n

x0 = 5x07
−1 − 6x07

−2 + 1

x0 −
5

7
x0 +

6

49
x0 = 1

x0 =
49

20

Then, we have

T0(n) = Th(n) + Tp(n) = θ13
n + θ22

n +
49

20
7n
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Using the initial conditions, we have

0 = T0(0) = θ1 + θ2 +
49

20

1 = T0(1) = 3θ1 + 2θ2 +
343

20

This gives θ1 = −225

20
, θ2 =

176

20
. Hence, the solution to the recurrence is given by

T (n) = −225

20
3n +

176

20
2n +

49

20
7n

Remark. Let f(n) = sn, r1 and r2 be the roots of the characteristic equation. Then

• If s ̸= r1, s ̸= r2, then Tp(n) = x0s
n;

• If s = r1, r1 ̸= r2, then Tp(n) = x0ns
n;

• If s = r1 = r2, then Tp(n) = x0n
2sn;

where x0 is constant to be determined in all cases.

Example. Consider the recurrenceT (n) = 6T (n− 1)− 9T (n− 2) + 3n forn ≥ 2

T (0) = 0, T (1) =
1

2
.

Let T0(n) = Th(n) + Tp(n), where Th(n) = 6T (n− 1)− 9T (n− 2).

For Th(n), characteristic equation: x2 = 6x− 9, r1 = 3 with multiplicity m1 = 2.

Hence, we have Th(n) = θ13
n + nθ23

n, which is the homogeneous solution.

Since f(n) = 3n and s = 3 is also a root of the characteristic equation. Let Tp(n) = x0n
23n

(particular solution),

x0n
23n = 6x0(n− 1)23n−1 − 9x0(n− 2)23n−2 + 3n

9x0n
2 = 18x0(n− 1)2 − 9x0(n− 2)2 + 9

9x0n
2 = 18x0(n

2 − 2n+ 1)− 9x0(n
2 − 4n+ 4) + 9

9x0n
2 = 9x0n

2 − 18x0 + 9

x0 =
1

2

Then, we have

T0(n) = Th(n) + Tp(n) = θ13
n + nθ23

n +
1

2
n23n

Using the initial conditions, we have

0 = T0(0) = θ1

1

2
= T0(1) = 3θ1 + 3θ2 +

3

2

This gives θ1 = 0, θ2 = − 1
3 . Hence, the solution to the recurrence is given by

T (n) = −1

3
n3n +

1

2
n23n
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Chapter 4

Asymptotic

Asymptotic notation is a shorthand used to give a quick measure of the behavior of a function f(n) as
n grows large.

4.1 Big O

Big O is the most frequently used asymptotic notation. It is used to give an upper bound on the growth
of a function, such as the running time of an algorithm.

Definition 4.1.1. We say that f(x) = O(g(x)) iff there exists a constant c > 0 and an x0 ≥ 0 such
that

f(x) ≤ cg(x) for all x ≥ x0

Or we can use the following notation

∃c > 0, x0 ≥ 0 such that f(x) ≤ cg(x)∀x ≥ x0

Example. Let f(x) = x2 and g(x) = x3.

By taking c = 1 and x0 = 1, we can simply conclude that x2 = O(x3).

However, to prove that there is no constant c such that x2 ≤ cx3 for all 0 ≤ x ≤ 1, we need
to use proof by contradiction.

For 0 ≤ x ≤ 1, we have x2 ≥ x3. Therefore, if such a constant c > 0 exists, then we must have
c ≥ 1 such that x2 ≤ cx3. However, whenever 0 ≤ x ≤ 1

c , we have

x3 ≥ 1

c
x2 > x3.

Since we get x3 > x3, by contradiction, we know that there is no constant c such that x2 ≤ cx3 for
all 0 ≤ x ≤ 1

We can also use differentiation to show the upper bound of a function.

Example. Let f(x) = lnx and g(x) = x.

Observe that f(1) = ln 1 = 0 < 1 = g(1). Moreover, f ′(x) = 1
x and g′(x) = 1 for all x > 0, which

implies that g′(x) > f ′(x) for all x > 1. It is the same as saying that g(x) grows faster than the
function f(x) because the slope of the former is larger than that of the latter. It follows that

lnx ≤ x for all x ≥ 1.

Hence, by taking c = 1 and x0 = 1 we have lnx = O(x).

16



Exercise. Let f(x) = x2 and g(x) = 2x. Show that f(x) = O(g(x)).

Example. Let
f(n) = n · (n+ 1) · (n+ 2) + (−1)n, g(n) = nα

for any integer n ≥ 1. What is the smallest α ∈ R such that f(n) = O(g(n))? Note that

|f(n)| = |n · (n+ 1) · (n+ 2) + (−1)n|
= |n3 + 3n2 + 2n+ (−1)n|
= n3 + 3n2 + 2n+ (−1)n (for any n ≥ 1)

We claim that α = 3 is the smallest α ∈ R such that f(n) = O(g(n)).

Let us first prove that α satisfies α ≥ 3 and then that α = 3.

Indeed, we must have α ≥ 3. The proof is by contradiction. If α < 3, then

lim
n→∞

|f(n)|
g(n)

= lim
n→∞

n3 + 3n2 + 2n+ (−1)n

nα
= ∞,

which shows that f(n) = ω(g(n)). However, this implies that f(n) = O(g(n)) is wrong. We have
reached the promised contradiction.

So let us now show that for α = 3 we have f(n) = O(g(n)). Indeed, choosing c = 7 and n0 = 1, we
get

|f(n)| = n3 + 3n2 + 2n+ (−1)n

≤ n3 + 3n2 · n+ 2n · n2 + n3

= 7n3

= cn3 (for all n ≥ n0)

4.2 Big Omega

As we use Big O notation to express upper bound, for lower bound, we have the "Big Omega" nota-
tion.

Definition 4.2.1. We say that f(x) = Ω(g(x)) iff there exists a constant c > 0 and an x0 ≥ 0 such
that

f(x) ≥ cg(x) for all x ≥ x0

Since Big O and Big Omega are essentially "mirror image" of one another, we have

Theorem 4.2.1 (Big O vs. Big Omega).

f(x) = O(g(x)) ⇐⇒ g(x) = Ω(f(x)).

Proof. By definition of big O, f(x) = O(g(x)) means

∃c1 > 0, x1 > 0 such that f(x) ≤ c1g(x) ∀x ≥ x1,

which means the same as

∃c1 > 0, x1 > 0 such that g(x) ≥ 1

c1
f(x) ∀x ≥ x1,

Hence, by taking c0 = 1
c1

> 0 and x0 = x1 ≥ 0, we have g(x) = Ω(f(x)) ■
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4.3 Theta

Theta can be understood as the approximation of a function.

Definition 4.3.1. We say that f(x) = Θ(g(x)) iff f(x) = O(g(x)) and g(x) = O(f(x)).

Remark. It is important to note that f(x) = Θ(g(x)) does not mean that f(x) = g(x), it just
means that

∃c1,2 > 0 such that c1g(x) ≤ f(x) ≤ c2g(x) ∀x ≥ x0

4.4 Little O

Little O notation can be understood as the strict upper bound on the growth of a function.

Definition 4.4.1 (Little O notation). For functions f, g : R → R, with g nonnegative, we say f is
asymptotically smaller than g, in symbols,

f(x) = o(g(x)) iff lim
x→∞

f(x)

g(x)
= 0.

Example. For example, let f(x) = x, g(x) = ex − 1. Because

lim
x→∞

f(x)

g(x)
= lim

x→∞

x

ex − 1
= 0.

Hence, we have f(x) = o(g(x))

Example. Let

f(n) =

{
0 if n is odd,
2 if n is even.

Is f(n) = o(1)?

Let g(n) = 1. Upon noting f(n) = 1 + (−1)n, we see that

lim
n→∞

f(x)

g(x)
= lim

n→∞
f(n).

However, this limit does not exist, as f(n) fluctuates between 0 and 2. Thus, f(n) ̸= o(1).

On the other hand, if f(n) = o(n)? Here, let g(n) = n. Note that 0 ≤ f(n) ≤ 2. It follows that

0 ≤ f(n)

g(n)
≤ 2

n

for n ≥ 1. By the sandwich theorem, we then obtain

lim
n→∞

f(n)

g(n)
= 0.

Thus, f(n) = o(n).
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4.5 Little Omega

Little Omega notation can be understood as the strict lower bound on the growth of a function.

Definition 4.5.1 (Little O notation). For functions f, g : R → R, with g nonnegative, we say f is
asymptotically smaller than g, in symbols,

f(x) = ω(g(x)) iff lim
x→∞

g(x)

f(x)
= 0.

4.6 Properties for Asymptotic Analysis

4.6.1 Rules for Asymptotic Analysis

• Transitivity

If f(n) = Π(g(n)) and g(n) = Π(h(n)), then f(n) = Π(h(n)), where Π = O, o,Ω, ω,Θ

• Rule of sums
f(n) + g(n) = Π(max{f(n), g(n)}), where Π = O,Ω, or Θ.

• Rule of products

If f1(n) = Π(g1(n)), f2(n) = Π(g2(n)), then f1(n)f2(n) = Π(g1(n)g2(n)), where Π = O, o,Ω, ω,Θ.

• Transpose symmetry
f(n) = O(g(n)) iff g(n) = Ω(f(n)).

• Transpose symmetry
f(n) = o(g(n)) iff g(n) = ω(f(n)).

• Reflexivity
f(n) = Π(f(n)), where Π = O,Ω,Θ.

• Symmetry
f(n) = Θ(g(n)) iff g(n) = Θ(f(n)).

4.6.2 Graph for Functions

One can understand the growth of functions by the following graph.

2 4 6 8
0

2

4

6

8

Increasing n

f
(n
)

1

log5 n

log2 n
n

n log2 n

2n

n2

n3
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Chapter 5

Set Theory and Counting Principle

5.1 Set Theory

Definition 5.1.1. Set is a collection of elements, in which each element appears only once.

Definition 5.1.2. Given a set S, the number of elements in S is denoted by |S|. The quantity |S| is
also referred to as the cardinality of S.

A set with no elements in it is called an empty set, which is denoted by ∅.

Definition 5.1.3. Given two sets S and T , we say that T is a subset of S, denoted by T ⊆ S, if
every element in T is also in S. It follows that if T ⊆ S, then |T | ≤ |S|.

For example, let
S = {1, 2, 3, 4, 5}, T = {2, 4}, U = {2, 4, 6}

Then, we have T ⊆ S and T ⊆ U .

Definition 5.1.4. Let S1 and S2 be two given sets.

The union of S1 and S2, denoted by S1 ∪ S2, is the set containing all elements from both S1 and
S2.

The intersection of S1 and S2, denoted by S1∩S2, is the set containing all elements that are common
to both S1 and S2.

We can also see union as the relationship "or", while intersection is the relationship "and".

Definition 5.1.5. Now, let S be a set and m ≥ 1 be an integer. A partition of S into m parts is a
collection of m subsets of S, denoted by S1, . . . , Sm, with the following properties:

• Exhaustion: S = S1 ∪ S2 ∪ · · · ∪ Sm.

• Non-Overlapping: For i ̸= j, we have Si ∩ Sj = ∅

5.2 Counting Principle

5.2.1 Addition Principle

Given S = {1, 2, 3, 4, 5}. Let S1 = {1, 2}, S2 = {3}, S3 = {4, 5} form a partition of S with 3 parts. Then,
the cardinality of S can be determined by the cardinalities of the constituent parts, i.e.

|S| = |S1|+ |S2|+ · · ·+ |Sm|.
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Example (Count the number of binary strings of length n with no consecutive 1’s.). Let S be the
desired string, then we can apply the addition principle.

Let S0 be the set of strings in S that start with 0; S1 be the set of strings in S that start with 1.
We have |S| = |S0|+ |S1|.
We can set up a recurrence relationship. Let |S| = T (n). Then, we have |S0| = T (n − 1) and
|S1| = T (n− 2). Then we have

|S| = T (n) = T (n− 1) + T (n− 2).

Using the initial conditions T (1) = 2 (string starts with 1 or 0) and T (2) = 3 (if the string starts
with 1, then we have only one option for the next digit; otherwise, we have two options), one can
find the number of the desired binary strings.

5.2.2 Multiplication Principle

If each element in S can be generated by performing an ordered sequence of actions, say, A1, A2, . . . , AN ,
and action Ai has pi choices, where i = 1, . . . , N , then the cardinality of S can be computed by

|S| = p1 × p2 × · · · × pN

Example. To count the number of integers between 0 and 9999 that have exactly one digit equal to
5, let S be the set of such integers. We can then partition this set to S1, S2, S3, S4, where S1 is the
set of integers in S with "5" appearing in the first position from the right, and so on. For example,
2051 ∈ S2. By the addition principle, we have

|S| = |S1|+ |S2|+ |S3|+ |S4|

Since every integer in S1 takes the form xxx5, with each "x" having 9 choices. We then have
|S1| = 93. It holds true for the other sets. Hence, we have |S| = 4 ∗ 93 = 2916

Example. Let us count the number of odd integers between 1000 and 9999 that have all distinct
digits. Let S be the set of such integers.

Method 1: Observe that each integer in S can be generated by the following ordered sequence of
action:

action choices no. of choices

A1 : pick the unit digit {1, 3, 5, 7, 9} 5
A2 : pick the tens digit {0, 1, . . . , 9} except the digit chosen in A1 9

A3 : pick the hundreds digit {0, 1, . . . , 9} except the digit chosen in A1, A2 8
A4 : pick the thousands digit {1, . . . , 9} except the digit chosen in A1, A2, A3 ?

We cannot find the choice for A4 directly since 0 may or may not be chosen in the previous cases.
Thus, we can partition S into

S1: set of integers in S whose tens digit is 0 ⇒ |S1| = 5× 1× 8× 7 = 280,

S1: set of integers in S whose hundreds digit is 0 ⇒ |S2| = 5× 8× 1× 7 = 280,

S3: set of integers in S with no 0 ⇒ |S3| = 5× 8× 7× 6 = 1680.

Then we have |S| = 280 + 280 + 1680 = 2240.
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Method 2: Consider a different sequence of actions:

action choices no. of choices

A1 : pick the unit digit {1, 3, 5, 7, 9} 5
A2 : pick the thousands digit {1, . . . , 9} except the digit chosen in A1 8

A3 : pick the tens digit {0, 1, . . . , 9} except the digit chosen in A1, A2 8
A4 : pick the hundreds digit {0, 1, . . . , 9} except the digit chosen in A1, A2, A3 7

Then we have |S| = 5× 8× 8× 7 = 2240.

5.2.3 Subtraction Principle

Definition 5.2.1. Let S be a set and A ⊆ S be a subset of S. The complement of A in S, denoted
by A, is the set that contains all the elements in S but not in A.

|S| = |A|+ |A|

Example. Consider computer passwords of length 6, each symbol of which is taken from 0, 1, ..., 9
and a, b, ..., z. We would like to count the number of passwords that have repeated symbols. Let
A be the set of such passwords. For instance, we have 1223aq, bb333k ∈ A, but 123456 /∈ A.

We can then use the subtraction principle, i.e. count the number of passwords that contains all
distinct symbols. Then, we have

|A| = |S| − |A| = 366 − P (36, 6)

5.2.4 Division Principle

Division principle states that if S is partitioned into k equal-sized parts, then

k =
|S|

number of elements in each part
.

Definition 5.2.2 (Ceil function). Given a real number x, define

⌈x⌉ = the least integer ≥ x

The symbol ⌈x⌉ is usually read as "the ceiling of x".

Proposition 5.2.1 (Pigeonhole Principle). Suppose that n objects are placed into k boxes. Then, at
least one box has at least ⌈n

k
⌉ objects.

Example. 51 distinct numbers are chosen from the integers between 1 and 100 inclusively.

Let the 50 pairs of consecutive integers

{1, 2}, {3, 4}, . . . , {99, 100}

be the pigeonholes and the 51 numbers be the pigeons. Then two of the 51 numbers must be in the
same pigeonholes. Therefore, there are 2 consecutive integers among the 51 chosen integers.
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5.3 Permutation and Combination

5.3.1 Permutation
Example. Consider a set of n elements: S0 = {1, . . . , n}. We call S0 the ground set. Also, let
r ≥ 1 be integer. An r-permutation of the n-elements ground set S0 is an ordered selection of r
elements from S0. Let S be the set of all different r-permutations of the n-element ground set S0.
For instance, when S0 = {1, 2, 3} and r = 2, we have

S = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)},

where the order of the two elements matters.

For general values of n and r. Let P (n, r) denotes this number. By performing the following ordered
sequence of action,

action number of choices

A1: pick the 1st element n
A2: pick the 2nd element n− 1

...
...

Ar: pick the rth element n− r + 1

Thus, we have

P (n, r) = n(n− 1) · · · (n− r + 1) =
n!

(n− r)!

5.3.2 Combination
Example. Consider the ground set S0 = {1, . . . , n} of n elements. Let r ≥ 1 be integer. An r-
combination of the n-element ground set S0 is an unordered selection of r elements from S0. Let
S be the set of all different r-combinations of the n-element ground set S0. For instance, when
S0 = {1, 2, 3} and r = 2, we have

S = {(1, 2), (1, 2), (2, 3)}

For general values of n and r, we can determine
(
n
r

)
by relating r-combinations to r-permutations. Indeed,

observe that each r-permutation of S0 can be generated via the following ordered sequence of action:

A1: pick r elements from S0

A2: order the r elements chosen from A1 to form the desired r-permutation.

Note that A1 has
(
n
r

)
choices, while A2 has r! choices. Hence, by the multiplication principle,

P (n, r) = number of r-permutation of S0 =

(
n

r

)
× r!

Since
P (n, r) =

n!

(n− r)!
,

it follows that (
n

r

)
=

n!

r!(n− r)!

Corollary 5.3.1. (
n

0

)
= 1,

(
n

1

)
= n,

(
n

n

)
= 1,

(
n

r

)
= 0 (whenever n < r).
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Example. Suppose that we have r presents to be distributed to k different people. How many
different distributions of the presents are there? For instance, when r = 3, k = 2, there are four
different distributions, which are given by

Person 1 Person 2

3 0
2 1
1 2
0 3

For general case, let xi be the number of presents received by the i-th person. Then we have

x1 + x2 + · · ·+ xk = r, xi ≥ 0.

The problem then becomes simply counting the number of different solutions for the above function,
which is the same as counting the number of different configurations of r "1"s (we have r presents)
and k − 1 "+"s (to separate the presents for each of them) in r + k − 1 placeholders. For example,
when r = 3, k = 2, we have 4 placeholders. We then choose three of them to put an "1" and one of
them to put an "+".

1 1 + 1

To compute the number of combinations as shown above, we can also use:(
r + k − 1

r

)

Example. Consider the system

x1 + x2 + x3 + x4 = 6, x1 ≥ 2, x2 ≥ 0, x3 ≥ 0, x4 ≥ −1.

We can change the variable by
y1 = x1 − 2, y4 = x4 + 1.

Then the system becomes

y1 + x2 + x3 + y4 = 5, y1 ≥ 2, x2 ≥ 0, x3 ≥ 0, y4 ≥ −1.

Then we have (
5 + 4− 1

5

)
=

(
8

5

)

Example. Consider the case when we are distributing 7 distinct presents to 3 different people, where
the first and second person will get 2 presents, and the third one will get 3 presents. How many
different distributions of the presents are there?

Then, for the first and second person, they will have
(
7
2

)
and

(
5
2

)
respectively. For the third person,

they will have
(
3
3

)
presents. By generalizing the arrangements, we have

Arrangements =
(
7

2

)
×
(
5

2

)
×
(
3

3

)
=

7!

2!(7− 2)!
× 5!

2!(5− 2)!
× 3!

3!(3− 3)!

=
7× 6

2
× 5× 4

2
= 210
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Corollary 5.3.2 (Bookeeper Theorem). Consider in general case, in which we are distributing n
distinct presents to k different people, where the i-th people will get ni presents (here ni is given a
priori and fixed). Then we have

Arrangements =
(
n

n1

)
×
(
n

n2

)
× · · · ×

(
n

nk

)
=

n!

n1!(n− n1)!
× (n− n1)!

n2!(n− n1 − n2)!
× · · · × (n− n1 − · · · − nk−1)!

nk!(n− n− n1 − · · · − nk−1)!

=
n!

n1!× n2!× · · · × nk!
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Chapter 6

Binomial Coefficients

6.1 Introduction

In this section, we introduce Binomial Coefficients.

6.1.1 Combinations and Permutation

As introduced before,

Definition 6.1.1. An r-combination of the n-element ground set S0 is an unordered selection of
r elements from S0. (

n

r

)
=

n!

r!(n− r)!

Definition 6.1.2. An r-permutation of the n-element ground set S0 is an ordered selection of r
elements from S0.

P (n, r) =
n!

(n− r)!

6.1.2 Binomial Identities
Proposition 6.1.1. For any integers m, r ≥ 0 with 0 ≤ r ≤ n,(

n

r

)
=

(
n

n− r

)
We have two ways to prove this proposition, namely Algebraic Proof and Combinatorial Proof.

Algebraic Proof. (
n

n− r

)
=

n!

(n− r)!(n− n+ r)!
=

n!

r!(n− r)!
=

(
n

r

)
■

Combinatorial Proof. Both side of the identity are supposed to be two different ways of solving
a counting problem. We can define the counting problem as counting the number of different
unordered selections of r elements from an n-element ground set. Then, we can define the RHS as
the selecting number to be excluded. Then this identity holds. ■
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6.1.3 Pascal’s Identity

Theorem 6.1.1 (Pascal’s Identity). For any integers n, r ≥ 0 with 1 ≤ r ≤ n− 1,(
n

r

)
=

(
n− 1

r

)
+

(
n− 1

r − 1

)
OR

(
n+ 1

r

)
=

(
n

r

)
+

(
n

r − 1

)
Again, we can prove this theorem in two ways.

Algebraic Proof.

RHS =
(n− 1)!

r!(n− r − 1)!
+

(n− 1)!

(r − 1)!(n− 1− r + 1)!

=
(n− 1)!

r!(n− r − 1)!
+

(n− 1)!

(r − 1)!(n− r)!

=
(n− 1)!

(r − 1)!(n− r − 1)!

(
1

r
+

1

n− r

)
=

(n− 1)!

(r − 1)!(n− r − 1)!

(
n

r(n− r)

)
=

n!

r!(n− r)!

=

(
n

r

)
■

Combinatorial Proof. Recall that
(
n
k

)
equals the number of subsets with k elements from a set with

n elements. Suppose one particular element is uniquely labeled X in a set with n elements.

To construct a subset of k elements not containing X, choose k elements from the remaining n− 1
elements in the set. There are

(
n−1
k

)
such subsets.

To construct a subset of k elements containing X, include X and choose k − 1 elements from the
remaining n− 1 elements in the set. There are 1×

(
n−1
k−1

)
such subsets.

Every subset of k elements either contains X or not. The total number of subsets with k elements
in a set of n elements is the sum of the number of subsets containing X and the number of subsets
that do not contain X,

(
n−1
k−1

)
+
(
n−1
k

)
.

This equals
(
n
k

)
. ■

6.1.4 Binomial Theorem
Theorem 6.1.2 (Binomial Theorem). Let n ≥ 1 be an integer. For any real number x, y,

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

Algebraic Proof. We use mathematical induction for this proof.

Base case: for n = 1, we have

RHS =

1∑
k=0

(
1

k

)
xky1−k

=

(
1

0

)
y +

(
1

1

)
x

= x+ y

= LHS
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Inductive step: assume that

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

For n+ 1, we have

LHS = (x+ y)n+1

= (x+ y)n(x+ y)

= (x+ y)

n∑
k=0

(
n

k

)
xkyn−k

=

n∑
k=0

(
n

k

)
xk+1yn−k +

n∑
k=0

(
n

k

)
xkyn−k+1

=

n+1∑
j=1

(
n

j − 1

)
xjyn−j+1 +

n∑
j=0

(
n

j

)
xjyn−j+1 (in the first term, letj = k + 1)

=

n∑
j=1

((
n

j − 1

)
+

(
n

j

))
xjyn−j+1 +

(
n

n

)
xn+1 +

(
n

0

)
yn+1

=

n∑
j=1

(
n+ 1

j

)
xjyn−j+1 +

(
n+ 1

n+ 1

)
xn+1 +

(
n+ 1

0

)
yn+1 (Pascal’s identity)

=

n+1∑
j=0

(
n+ 1

j

)
xjyn−j+1

=

n+1∑
k=0

(
n+ 1

k

)
xkyn−k+1

■

Combinatorial Proof. Consider the case when n = 3, the LHS of the theorem could be written as

(x+ y)(x+ y)(x+ y).

The idea of expanding the above expression could be done by taking one of x or y from each (x+y)
term. For instance, if we take one x and two y from the expression above, we will have three xy2

terms. (x+ y)3 is simply equal to the sum of the terms.

Then, for the general case, consider the term xkyn−k in the expression of (x+y)n, where 0 ≤ k ≤ n.
Such a term could be obtained as taking an x from k of the n (x+ y) terms, and taking y from the
remaining n− k terms. By definition, there are

(
n
k

)
ways to perform this task. Hence, the term(

n

k

)
xkyn−k

appears in the expansion of (x + y)n. By summing the above over k = 0, 1, . . . , n, we obtain the
desired identity. ■

6.1.5 Multinomial Theorem
Theorem 6.1.3 (Multinomial Theorem). Let n ≥ 1 be an integer. For any real number x1, x2, . . . , xk,

(x1 + x2 + · · ·+ xk)
n =

∑
n1,n2,··· ,nk

n1+n2+···+nk=n

n!

n1!× n2!× · · · × nk!
xn1
1 xn2

2 · · ·xnk

k

CHAPTER 6. BINOMIAL COEFFICIENTS 28



Chapter 7

Elements of Discrete Probability

7.1 Basic Definition
Definition 7.1.1 (Probability Space). A probability space is a pair (S, p(·)), where S (Sample space)
is the set of all possible outcomes of the random experiment, and p(·) is a function that assigns a
number to each outcome in S such that p(s) ≥ 0, s ∈ S, and∑

s∈S

p(s) = 1.

Definition 7.1.2 (Probability of an Event). Let (S, p(·)) be a probability space. An event T is simply
a subset of S. The probability of an event T is given by

p(T ) =
∑
s∈T

p(s)

Example. Consider two rolls of a 6-sided die. Then, the set of all possible outcomes are given by

S = {(1, 1), (1, 2), (1, 3), · · · , (2, 1), · · · , (6, 1), · · · , (6, 6)},

where (i, j) means that the first roll gives the value i and the second roll gives that value j. Suppose
that every outcome is equally likely. Then we have |S| = 6× 6 = 36, where p(i, j) = 1

36 .

Let T be the event that both rolls are even. We have

T = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}.

Then, we have

p(T ) =
∑
s∈T

p(s) = 9× 1

36
=

1

4
.

Example (Poker). A hand of 5 cards is drawn from a standard 52-card deck. Suppose that every
hand of 5 cards is equally likely. What is the probability of getting a hand with all distinct face
values?

Sample Space S is the set of all possible hands of 5 cards from a standard 52-cards deck: |S| =
(
52
5

)
.

Then, let T be the set of all possible hands of 5 cards whose face values are distinct. To choose 5
distinct values to appear in the hand, we have

(
13
5

)
. To choose one suit for each of the 5 distinct

values, we have 45. Then, we have |T | =
(
13
5

)
× 45.

p(T ) = |T | × 1

|S|
=

(
13

5

)
× 45 × 1(

52
5

)
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Example (Poker). Consider distributing 5 cards (one hand) each to two persons from a deck of 52
playing cards. What is the number of distributions that both people receive a "Four of a King",
i.e. the hand of 5 cards contains all the 4 cards from the same face value?

The sample space is the ways to distribute the cards,

|S| =
(
52

5

)
×

(
47

5

)
=

52!

5!5!42!

The event is when both persons receive a "Four of a King". It can be understood as each person
will only have two distinct face values in hand. There are

|T | = 13× 12× 44× 43

possibilities, where we have 13× 12 for choosing two face value for the first person, and 44× 43 is
to choose two face values for the second person. Then we have

p(T ) =
|T |
|S|

=
13× 12× 44× 43

52!

5!5!42!

Example (Monty Hall Problem). You are given three identical boxes, A,B, and C. Let A contains
the grand prize, and the rest contains nothing. You do not know this. After you pick a box and
announce your choice, one of the empty boxes that is not picked by you is opened. Then you are
offered the option to change your choice. Should you change your choice?

What we are trying to do here is just to maximize the probability of winning the grand prize.
Therefore, we can describe the sequence of actions in the game by a 3-tuple (u, v, w), where u is
your initial choice, v is the opened empty box, and w is your final choice.

Situation 1: Always change

In this case, the sample space is given as

S = {(A,B,C), (A,C,B), (B,C,A), (C,B,A)}

In this case, only (B,C,A), (C,B,A) will guarantee the winning outcomes. Observing that winning
or losing outcomes merely depend on the first box you choose if you always change your option.
Since boxes are identical, the winning probability will be

p(T ) =
1

3
+

1

3
=

2

3
.

Situation 2: Never change

In this case, the sample space is given as

S = {(A,B,A), (A,C,A), (B,C,B), (C,B,C)}

In this case, only (A,B,A), (A,C,A) will guarantee the winning outcomes. Observing that winning
or losing outcomes still depend on the first box you choose if you never change your option. Since
boxes are identical, the winning probability will be

p(T ) =
1

3
.
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Example (Binomial Distribution). Suppose that we flip a coin n times, where each flip is independent
of one another. Furthermore, suppose that the probability of getting a head in a flip is p. What is
the probability of getting exactly k heads, where k = 0, 1, . . . , n?

We can derive the following function for the general case, i.e. among n flips, we have k heads, where
p is the probability of getting a head and q = 1− p is the probability of getting a tail.

p(E) =

(
n

k

)
pkqn−k

One should be able to examine the legitimacy of the above probability assignment.

Example (Birthday Paradox). Suppose there are n people in a room. We assume that a year only
has 365 days, and that every day is equally likely to be the birthday of a person. What is the
probability that at least two people have the same birthday? Here we assume that n < 365.

For sample space S we have the set of all possible sequences of n birthday, the |S| = 365n.

Let T be the event in which at least two birthdays are the same. We can find the complement T ,
i.e. all birthdays are distinct. Then we have

|T | = |S| − |T | = 365n − P (365, n) = 365n − 365!

(365− n)!

Birthday paradox could be visualized as below:
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Adapted from MartinThoma
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Chapter 8

Introduction to Graph Theory

8.1 Introduction

A graph consists of a nonempty set V of vertices and a set E of edges, where each edge in E connects
two (may be the same) vertices in V . We usually use G = (V,E) to indicate the above relationship.

8.1.1 Simple Graph

If each edge connects two different vertices, and no two edges connect the same pair of vertices, then
the graph is a simple graph. For example, the graph on the left is a simple graph, and the graph on the
right is not a simple graph.

Z

W X

Y Z

W X

Y

8.1.2 Directed Graph

A directed graph G consists of a nonempty set V of vertices and a set E of directed edges, where each
edge is associated with an ordered pair of vertices. We write G = (V,E) to denote the graph. For
example

Z

W X

Y

8.1.3 Undirected Graph

Let e be an edge that connects vertices u and v. We say

• e is incident with u and v

• u and v are the endpoints of e ;

• u and v are adjacent (or neighbors)

• if u = v, the edge e is called a loop
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The degree of a vertex v, denoted by deg(v), is the number of edges incident with v, except that a loop
at v contributes twice to the degree of v.

Example. Observe the following graph:

A

B

C

D

E

F

We have deg(A) = 3, deg(B) = 3, deg(C) = 5, deg(D) = 2, deg(E) = 1, deg(F ) = 0

For a simple graph G with n vertices, if it is an undirected graph, we have a maximum of
(
n
2

)
= n(n−1)

2
edges; if it is a directed graph, then we have a maximum of n(n− 1) edges.

Example. Prove the proposition: among 6 people, there will be "3 mutual acquaintances" or "3
mutual strangers". Both can happen at the same time.

Consider a graph G = (V,E) where V is the set of people, and E indicates acquaintance. For
example,

A

B C

D

EF

For anyone in the graph, number of neighbors + number of non-neighbors = 5. By pigeonhole
principle, we have at least ⌈ 5

2⌉ = 3 neighbor or non-neighbors for a person.

Case 1: number of neighbors of A ≥ 3. Let B,C,D be the neighbors, i.e.

B

C

D
A

If (B,C) ∈ E or (C,D) ∈ E or (B,D) ∈ E, then we have a triangle formed by three nodes, i.e.
there are three acquaintances.

If (B,C) /∈ E and (C,D) /∈ E and (B,D) /∈ E, then we have three mutual strangers.

Case 2: number of non-neighbors of A ≥ 3. Let B,C,D be the non-neighbors, i.e.

B

C

D
A

If (B,C) ∈ E or (C,D) ∈ E or (B,D) ∈ E, then we have a triangle formed by three nodes, i.e.
there are three acquaintances.

Otherwise, A and at least 2 members from B,C,D will form a group of 3 mutual strangers.
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8.1.4 Regular Graph

A regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has
the same degree or valency. We called the graph k-regular if the common degree is k. For example, the
following graph is 3-regular:

A

B

C

DE

If every vertex in a simple graph has the same degree, then it is also called a regular graph. However, it
should be noted that a regular graph need not be a simple graph; it only needs to have the same degree
for every vertex, in which loops are also allowed.

8.1.5 Cartesian Product

In graph theory, the Cartesian product G×H of graph G and H is a graph such that:

• the vertex set of G×H is the Cartesian product V (G)× V (H);

• two vertices (u, v) and (u′, v′) are adjacent in G×H if and only if either

– u = u′ and v is adjacent to v′ in H or

– v = v′ and u is adjacent to u′ in G

For example:

u1

v1

G1

u2 v2 w2

G2

(u1, u2) (u1, v2) (u1, w2)

(v1, u2) (v1, v2) (v1, w2)

G1 ×G2

8.1.6 Handshaking Theorem

Theorem 8.1.1 (Handshaking Theorem). Let G = (V,E) be an undirected graph with |E| edges.
Since each edge e contributes exactly twice to the sum on the left side (one to each endpoint).∑

v∈V

deg(v) = 2|E|

Corollary 8.1.1. An undirected graph has an even number of vertices of odd degree.

2|E| =
n∑

i=1

deg(vi) =
∑

i:deg(vi)=odd

deg(vi) +
∑

i:deg(vi)=even

deg(vi)

∑
i:deg(vi)=odd deg(vi) is an even number, then the number of terms summed is even. Thus, the

number of odd-degree vertices is even.
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8.2 Simple Graph

Definition 8.2.1 (Simple Paths). A simple path in G is either a single vertex or an ordered list of
distinct vertices v0 − v1 − · · · − vk.

Consider the following graph

A

B

C
D

EF

We then have simple path from C to F : C −E −F . However, C −B −C −E −F is not a simple path.

Definition 8.2.2 (Cycles). A cycle in G is a path v0 − v1 − · · · − vk such that v0 = vk and k ≥ 3.

Again, by observing the graph above, we can see that one example for cycle is C − E − A − B − C.
However, C −D − C is not a cycle. The length of a path/cycle is the number of edges in the path.

8.2.1 Properties of Graphs

• A graph is connected if every pair of vertices has a path between them. (fig.1 is connected, fig.2 is
not connected)

• A graph is acyclic if it does not contain cycle. (fig.3, fig.4)

• A connected, acyclic graph is called a tree. (fig.3)

• A leaf of a tree is a vertex of degree1. (both vertices in fig.4 are leaves)

A

B

C

D

(a) fig.1

A B

C

D

E

(b) fig.2

A

B

C

(c) fig.3

A

B

(d) fig.4

8.2.2 Special Simple Graphs

A complete graph on n vertices, denoted by Kn, is a simple graph that contains one edge between each
pair of distinct vertices. For example, for graph K5, we have:

A

B

C

DE

An n-cube, denoted by Qn, is a graph that consists of 2n vertices, each representing a distinct n-bit
string. An edge exists between two vertices is the corresponding strings differ in exactly one bit position.

A bipartite graph is a graph such that the vertices can be partitioned into two sets V and W , so that
each edge has exactly one endpoint from V , and one endpoint from W .
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For example, in the following graph, A,B,C ∈ V1, D,E ∈ V2 such that V = V1 ∪ V2, V1 ∩ V2 = ∅. One
can also assign one of two different colors to each vertex, so that no adjacent vertices are assigned the
same color.

A

B

C

D

E

8.2.3 Graph Isomorphism

A graph G = (V1, E1) and H = (V2, E2) are isomorphic if we can set up a bijection f : V1 → V2 such
that x and y are adjacent in G. For example, the following graphs are isomorphic to each other.

A B

C D

B D

A C

A D

C B

A
B

C D

By observation, one can see that if two graphs are isomorphic, then the adjacent vertices in the original
graph will still be adjacent, and the degree of such vertices also remains unchanged.

8.3 Graph Search

8.3.1 Eulerian Paths and Circuits

In graph theory, an Eulerian path in a graph is a path that contains each edge exactly once (allowing
for revisiting vertices). If such a path is also a circuit, it is called an Eulerian circuit. For example, the
following graph contains an Eulerian path:

A

B C

D E
F

Remark. A connected graph G has an Eulerian circuit if and only if each vertex of G has even
degree.
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8.3.2 Graph Representation

We can use the adjacency matrix or adjacency list to represent an undirected graph.

Example. Below shows two types of graph representation:

Undirected Graph

X Y

Z W

V

Adjacency Matrix


X Y Z W V

X 0 1 1 0 0
Y 1 0 0 1 1
Z 1 0 0 1 0

W 0 1 1 0 1
V 0 1 0 1 0



Adjacency List
[0] X → Y → Z
[1] Y → X → W → V
[2] Z → X → W
[3] W → Y → Z → V
[4] V → Y → W

8.3.3 Breadth-First Search (BFS)

For Breadth-First Search, we have graph G = (V,E) as input, and source vertex s ∈ V . Then, the
distance (d[u]) from s to u, for all u ∈ V , and π[u], which is the predecessor of u are the outputs. One
can take the idea of Breadth-First Search as a wave spread out from one vertex.

Example. Consider the following graph.

A

B E F

IC

D H G

We have the following traversal: A → B → C → D → E → F → H → I → G.

We can also use the following adjacency list to show the same result

Node Queue

A (1, B), (1, C), (1, D)
B (1, C), (1, D), (1, E)
C (1, D), (1, E), (1, F), (1, G), (1, H)
D (1, E), (1, F), (1, G), (1, H)
E (1, F), (1, G), (1, H)
F (1, G), (1, H), (1, I)
G (1, H), (1, I)
H (1, I)
I -

Then, for predecessor and distance, we have:

u A B C D E F G H I

π[u] A A A B C C C F

d[u] 0 1 1 1 2 2 2 2 3
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8.3.4 Depth-First Search (DFS)

For Depth-First Search, we have graph G = (V,E) as input, and source vertex s ∈ V . Then, the discovery
time (d[v]) from s to v, for all v ∈ V , and f [v], which is the finishing time are the outputs. Depth-First
Search is just like when we discover a vertex, we explore from it as far as we can.

Example. Consider the following graph.

A B D E

C F G H

By using Depth-First Search, we have the following traversal:

A

1/12

B

2/9

D

3/8

E

4/5

C
10/11

F
6/7

G
13/16

H
14/15

We use the notation "d[v]/f [v]" to show the discovery and finishing time. For example, the discovery
time of node A is 1, finishing time is 12, then we use "1/12" to denote this timestamp. For discovery
time and finishing time, we also have:

v A B C D E F G H

d[v] 1 2 10 3 4 6 13 14

f [v] 12 9 11 8 5 7 16 15

A graph is said to be strongly connected if every vertex is reachable from every other vertex. The
strongly connected components of an arbitrary directed graph form a partition into subgraphs that are
themselves strongly connected.

A vertex v is an articulation point (also called articulation vertex) if removing v increases the number
of connected components.

A topological sort or topological ordering of a directed graph is a linear ordering of its vertices such
that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering. Topological
sorting can only be used on directed acyclic graphs. If a graph contains cycles, it cannot be topologically
sorted.

Example (Topological Sort). Consider the following graph.

A B C

D E

F G H
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We can use DFS to find the topological order. We first select an unvisited node; for example, we
choose node B in this case.

B

D E

G H

We have: B → D → E → H → G Then, we choose another node, in this case we choose node A.

A F

We have: A → F → B → D → E → H → G.

Finally, we have C → A → F → B → D → E → H → G.

This is one of the possible topological sorts.

8.3.5 Shortest Path Problem

Consider a weighted graph, which has weighted edges. We define such a graph by G = (V,E,w), where
the newly introduced parameter w is the weight of an edge. Then how do we find the shortest path on
a large graph from one point to another? We can use Dijkstra’s Algorithm.

We initialize the algorithm by (A) maintain a table of cost c(v), where starting vertex has cost c(v0) = 0,
and other vertices have cost c(vi) = ∞, i ̸= 0; (B) maintain a set of visited vertices S = ∅. After choosing
the unvisited vertex with minimum cost, we update the cost of its adjacent vertices. After updating,
we repeat this process. When every vertex is visited, the algorithm will then end. These operations are
called relaxation.

Example (Shortest Path Problem). Consider the following graph, find the shortest path from vertex
A to vertex Z.

A

B

C

D

E

Z

5
4

3

5
10

3

1
20

To solve this problem, we can use the method mentioned above:

A0

B
5

C
3

D
∞

E
∞

Z ∞

5
4

3

5
10

3

1
20

A0

B
4

C
3

D
∞

E
13

Z 23

5
4

3

5
10

3

1
20
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A0

B
4

C
3

D
8

E
13

Z 23

5
4

3

5
10

3

1
20

A0

B
4

C
3

D
8

E
13

Z 11

5
4

3

5
10

3

1
20

A0

B
4

C
3

D
8

E
13

Z 11

5
4

3

5
10

3

1
20

We can also use tables to represent the algorithm:

c(·) Path

A 0 A
B ∞
C ∞
D ∞
E ∞
Z ∞

S = ∅

c(·) Path

A 0 A
B 5 A, B
C 3 A, C
D ∞
E ∞
Z ∞

S = A

c(·) Path

A 0 A
B 4 A, C, B
C 3 A, C
D ∞
E 13 A, C, E
Z 23 A, C, Z

S = A,C

c(·) Path

A 0 A
B 4 A, C, B
C 3 A, C
D 8 A, C, B, D
E 13 A, C, E
Z 23 A, C, Z

S = A,C

c(·) Path

A 0 A
B 4 A, C, B
C 3 A, C
D 8 A, C, B, D
E 13 A, C, E
Z 11 A, C, B, D, Z

S = A,C,B,D

c(·) Path

A 0 A
B 4 A, C, B
C 3 A, C
D 8 A, C, B, D
E 13 A, C, E
Z 11 A, C, B, D, Z

S = A,C,B,D,Z

Therefore, the shortest path from A to Z is A → C → B → D → Z

8.3.6 Minimum Spanning Trees (MST)

Given an undirected graph G = (V,E) with weights on the edges, a minimum spanning tree (MST) of G
is an acyclic subset T ⊆ E that connects all nodes in V and whose total weight w(T ) =

∑
(u,v)∈T w(u, v)

is minimum.

A minimum spanning tree has precisely n− 1 edges, where n is the number of vertices in the graph.

We have two algorithms for finding the MST. Prim’s algorithm starts from finding the minimum edges
among all edges, then finds the minimum edges that are connected to the vertices that are adjacent in
the previous edges selected.

Kruskal’s algorithm again starts from finding the minimum edges among all edges. However, we will
keep finding the minimum edges until all vertices are being visited.
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Example. Find the minimum spanning tree for the following graph.

A

B C D

E

FGH

I

4
8 7

9

10
21

8

11 14
7

2
4

6

Prim’s Algorithm

A

B C D

E

FGH

I

4
8 7

9

10
2

8

11 14
7

4
6

2

1

A

B C D

E

FGH

I

4
8 7

9

108

11 14
7

4
6

2

1 2

A

B C D

E

FGH

I

4
8 7

9

108

11 14
7 6

2

1 2

4
A

B C D

E

FGH

I

4
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