
CSCI2100 Data Structures

Ryan Chan

May 6, 2025

Abstract

This is a note for CSCI2100 Data Structures.
Contents are adapted from the lecture notes of CSCI2100, prepared by Irwin King, as well as some online
resources.
This note is intended solely as a study aid. While I have done my best to ensure the accuracy of the
content, I do not take responsibility for any errors or inaccuracies that may be present. Please use the
material thoughtfully and at your own discretion.
If you believe any part of this content infringes on copyright, feel free to contact me, and I will address
it promptly.
Mistakes might be found. So please feel free to point out any mistakes.

https://www.cse.cuhk.edu.hk/irwin.king/

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Algorithm . 3
1.3 Study of Data . 4

2 Analysis 5
2.1 Complexity . 5
2.2 Recurrence Relations . 6

3 ADT, List, Stack and Queue 7
3.1 Abstract Data Type (ADT) . 7
3.2 List . 7
3.3 Stack . 9
3.4 Queue . 10

4 Trees 12
4.1 General Tree . 12
4.2 Binary Tree . 13
4.3 Expression Tree . 14
4.4 Binary Search Tree . 14
4.5 AVL Tree . 15
4.6 B-Tree . 17

5 More on Tree 19
5.1 Tries . 19
5.2 B-Tree . 20

6 Hashing 22
6.1 Introduction . 22
6.2 Hash Function . 23
6.3 Collision Resolution . 24

7 Heaps 29
7.1 Introduction . 29
7.2 Binary Heaps . 29
7.3 Operations . 30

8 Sorting 33
8.1 Introduction . 33
8.2 Bubble Sort . 34
8.3 Insertion Sort . 35
8.4 Selection Sort . 36
8.5 Shell Sort . 37
8.6 Heap Sort . 38
8.7 Merge Sort . 39
8.8 Quick Sort . 40
8.9 Radix Sort . 41

1

8.10 More on Sorting . 42

9 Graph Algorithm 43
9.1 Definitions . 43
9.2 Implementation . 43
9.3 Topological Sort . 44
9.4 Algorithms . 45
9.5 Maximum-Flow Algorithm . 48
9.6 Minimum Spanning Tree . 49
9.7 Depth-First Search . 51

CONTENTS 2

Chapter 1

Introduction

1.1 Overview

A data structure is a way to organize and store data in a computer program, allowing for efficient
access and manipulation.

An algorithm is different from a program. An algorithm is a process or set of rules used for calculation
or problem-solving. It is a step-by-step outline or flowchart showing how to solve a problem. A program,
on the other hand, is a series of coded instructions that control the operation of a computer or other
machines. It is the implemented code of an algorithm.

For example, to solve the greatest common divisor (GCD) problem, we can use the following algorithm.

Algorithm 1.1: Euclid’s Algorithm
Data: m,n ∈ Z+

Result: GCD(m,n)

1 while m > 0 do
2 if n > m then
3 swap m and n

4 subtract n from m

5 return n

By using a mathematical method to prove this algorithm, we can show that it is correct, provided that
it terminates.

Having proved the correctness, we also need to use different test cases to check if there is anything wrong
with the coding or the proof. We should consider special cases, including large values, swapped values,
etc.

We are also interested in the time and space (computer memory) it uses, which we call time complexity
and space complexity. Typically, complexity is a function of the values of the inputs, and we would
like to know which function. We can also consider the best case, average case, and worst-case scenarios.

For example, in the above algorithm, the best case would be m = n, with just one iteration. If n = 1,
there are m iterations, which is the worst case. However, for the average case, it is difficult to analyze.

Also, for space complexity, it is constant since we only use space for the three integers: m, n, and t.

To improve the above algorithm, we can use mod, so we don’t need to keep doing subtraction.

1.2 Algorithm

An algorithm is a finite set of instructions which, if followed, accomplishes a particular task. Every
algorithm must satisfy the following criteria:

3

- Input: There are zero or more quantities that are externally supplied.

- Output: At least one quantity is produced.

- Definiteness: Each instruction must be clear and unambiguous.

- Finiteness: If we trace out the instructions of an algorithm, then for all cases, the algorithm will
terminate after a finite number of steps.

- Effectiveness: Every instruction must be sufficiently basic that it can, in principle, be carried out by a
person using only pencil and paper.

We also define an algorithm as any well-defined computational procedure that takes some value, or
set of values, as input and produces some value, or set of values, as output. It is thus a sequence of
computational steps that transform the input into output.

It can also be viewed as a tool for solving a well-specified computational problem. The problem statement
specifies, in general terms, the desired input or output relationship, and the algorithm describes a specific
computational procedure for achieving that input or output relationship.

An algorithm is said to be correct if, for every input instance, it halts with the correct output. It can
solve the given computational problem. In contrast, an incorrect algorithm might not halt at all on some
input instances, and sometimes it can even produce useful results.

1.3 Study of Data

A data structure is a particular way of storing and organizing data in a computer so that it can be used
efficiently.

A data structure is a set of domains D, a designated domain d ∈ D, a set of functions F , and a set of
axioms A.

An implementation of a data structure d is a mapping from d to a set of other data structures e.

CHAPTER 1. INTRODUCTION 4

Chapter 2

Analysis

2.1 Complexity

Before, we talked about the definition of an algorithm. In this part, we would like to know how we can
estimate the time required for a program, how to reduce the running time of a program, what the storage
complexity is, and how to deal with trade-offs.

We can analyze the runtime by comparing functions. For example, given two functions f(N) and
g(N), we can compare their relative rates of growth. There are three types of comparisons that we can
make: f(n) = Θ(g(n)) represents the exact bound, f(n) = O(g(n)) represents the upper bound, and
f(n) = Ω(g(n)) represents the lower bound.

By using bounds, we can establish a relative order among functions. Here, we often use O(n) to analyze
time complexity.

For the definition of the upper bound, it says that there is some point n0 past which cf(N) is always at
least as large as T (N). Then we say that T (N) = O(f(N)), where f(N) is the upper bound on T (N).

Definition 2.1.1. We say that f(n) = O(g(n)) iff there exists a constant c > 0 and an n0 ≥ 0 such
that

f(n) ≤ cg(n) for all n ≥ n0

Or we can use the following notation

∃c > 0, n0 ≥ 0 such that f(n) ≤ cg(n)∀n ≥ n0

There are some rules to follow:

• Transitivity
If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

• Rule of sums
f(n) + g(n) = O(max{f(n), g(n)})

• Rule of products

If f1(n) = O(g1(n)), f2(n) = O(g2(n)), then f1(n)f2(n) = O(g1(n)g2(n))

We do not include constants or lower-order terms inside Big-O notation.

If f(n) is a polynomial in n with degree r, then f(n) = O(nr), but for s < r, f(n) ̸= O(ns).

Also, any logarithm of n grows more slowly than any positive power of n as it increases. Hence, log n is
O(nk) for any k > 0, but nk is never O(log n) for any k > 0.

5

Order Time

O(1) constant time
O(n) linear time
O(n2) quadratic time
O(n3) cubic time
O(2n) exponential time

O(log n) logarithmic time
O(log2 n) log-squared time

On a list of length n, sequential search has a running time of O(n).

On an ordered list of length n, binary search has a running time of O(log n).

The sum of the sums of integer indices of a loop from 1 to n is O(n2).

In summary, Big-O notation provides an upper bound of the complexity in the worst-case, helping to
quantify performance as the input size becomes arbitrarily large. However, it doesn’t measure the actual
time, but represents the number of operations an algorithm will execute.

2.2 Recurrence Relations

Recurrence relations are useful in certain counting problems, for example, recursive algorithms. They
relate the n-th element of a sequence to its predecessors.

By definition, a recurrence relation for the sequence a0, a1, · · · is an equation that relates an to certain
of its predecessors a0, a1, · · · , an−1. Initial conditions for the sequence are explicitly given values for a
finite number of the terms of the sequence.

To solve a recurrence relation, we can use iteration. We use the recurrence relation to write the n-th term
an in terms of certain of its predecessors. We then successively use the recurrence relation to replace
each of an−1, · · · by certain of their predecessors. We continue until an explicit formula is obtained.

For example, the Fibonacci sequence is also defined by the recurrence relation.

Example (Tower of Hanoi). Find an explicit formula for an, the minimum number of moves in which
the n-disk Tower of Hanoi puzzle can be solved.

Given an = 2an−1 + 1, a1 = 1, by applying the iterative method, we obtain:

an = 2an−1 + 1

= 2(2an−2 + 1) + 1

= 22an−2 + 2 + 1

= 22(2an−3 + 1) + 2 + 1

= 23an−3 + 22 + 2 + 1

= · · ·
= 2n−1a1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n−1 + 2n−2 + 2n−3 + · · ·+ 2 + 1

= 2n − 1

CHAPTER 2. ANALYSIS 6

Chapter 3

ADT, List, Stack and Queue

3.1 Abstract Data Type (ADT)

We use data abstraction to simplify software development since it facilitates the decomposition of the
complex task of developing a software system. To put it simply, data abstraction shows only the essential
details of data, while the implementation details are hidden.

For example, as will be discussed later, List, Stack, and Queue (LSQ) are forms of data abstraction, or
what we call abstract data types. We can use them to retrieve or store data, but we don’t know how
they are actually stored or indexed.

Data encapsulation, or information hiding, is the concealing of the implementation of a data object from
the outside world. Through data abstraction, we can separate the specification of a data object from its
implementation.

A data type is a collection of objects and a set of operations that act on those objects. An abstract data
type (ADT) is a data type organized in such a way that we can separate the specification of the object
and the specification of the operations on the object. Abstract data types are simply a set of operations,
and they are mathematical abstractions.

Note that abstraction is like a functional description without knowing how to use it, while implementa-
tion, on the contrary, is something that can be used and executed.

In summary, an ADT is a high-level description of how data is organized and the operations that can be
performed on it. It abstracts the details of its implementation and only exposes the operations that are
allowed on data structures.

3.2 List

The first abstract data type in this chapter is List.

3.2.1 Definition

When dealing with a general list of the form a1, a2, · · · , an, we say that the size of this list is n. If the
list is of size 0, we call it the null list. Except null list, we say that ai+1 follows/succeeds ai(i < n) and
that ai−1 precedes ai(i > 1).

The first element of the list is a1, and the last element is an. The predecessor of a1 and the successor of
an is not defined.

3.2.2 Operations

A list of elements of type T is a finite sequence of elements of T together with the following operations:

7

- Create the list and make it empty.

- Determine whether the list is empty or not.

- Determine whether the list is full or not.

- Find the size of the list.

- Retrieve any entry from the list, provided that the list is not empty.

- Store a new entry, replacing the entry at any position in the list, provided that the list is not empty.

- Insert a new entry into the list at any position, provided that the list is not full.

- Delete any entry from the list, provided that the list is not empty.

- Clear the list to make it empty.

With these operations, we can perform various tasks on the list ADT.

3.2.3 Implementation

We can use an array to implement a list. Most of the operations follow linear time, for example,
print_list, make_null, find, and find_kth. For insertion, there could be cases where the list is full,
and that’s why we need dynamically allocated space. For deletion, we need to find the element, perform
the deletion, and reallocate space, which might require more time. Thus, we introduce the linked list.

3.2.4 Linked List

There are several types of linked lists:

Figure 3.1: Singly Linked List Figure 3.2: Singly Linked List with Header

Figure 3.3: Doubly Linked List Figure 3.4: Circularly Linked List

Figure 3.5: Circularly Doubly Linked List

A polynomial can be represented as

F (X) =

N∑
i=0

AiX
i

CHAPTER 3. ADT, LIST, STACK AND QUEUE 8

For example, F (X) = 4X3+2X2+5X+1. We may want to perform operations like addition, subtraction,
multiplication, and differentiation. Using an array data structure, the time complexity may be larger due
to the need to store all terms, including zero coefficients. However, with a linked list, we can efficiently
perform these operations by traversing the linked list and processing only the non-zero terms.

Also, note that a circular list saves space but not time. It is useful for smaller datasets. However, for a
larger number of students and courses, the use of such a circular list might be a waste of space.

In summary, a list abstract data type represents an ordered collection of elements. They can be added
or removed at any position in the list. It provides methods to access elements by their position.

By using different types of linked lists, we can achieve various goals. For example, we can print all the
elements in reverse using a doubly linked list.

3.3 Stack

3.3.1 Definition

A stack is an ordered list in which all insertions and deletions are made at one end, called the top. It
follows the Last In, First Out (LIFO) rule.

3.3.2 Operations

A stack of elements of type T is a finite sequence of elements of T along with the following operations:

- Create the stack.

- Determine if the stack is empty or not.

- Determine if the stack is full or not.

- Determine the number of entries in the stack.

- Insert (Push) a new entry at one end of the stack, called its top, if the stack is not full.

- Retrieve the entry at the top of the stack, if the stack is not empty.

- Delete (Pop) the entry at the top of the stack, if the stack is not empty.

- Clear the stack to make it empty.

3.3.3 Implementation

We can use a doubly linked list to implement the stack, where both Push and Pop operations happen at
the front of the list. We can use the Top operation to examine the element at the front of the list. In
this case, the space complexity would be O(3n), and the time complexity would be O(c), where c is a
constant.

Alternatively, we can use an array to implement the stack, since we only perform insertion and deletion
at the top. However, we need to declare the size ahead of time and use TopOfStack as the counter to
point to the top of the stack. If an array is used, the space complexity would be O(n), and the time
complexity would be O(1).

3.3.4 Application

Balance Symbols

We can use a stack to balance symbols, which is commonly used in compilers to check for syntax errors.
While compiling, an empty stack is created, and an opening symbol is pushed onto the stack. Then,
when a closing symbol is encountered, it is popped from the stack. There could be four types of errors:

1. Stack Overflow: Too many brackets.

CHAPTER 3. ADT, LIST, STACK AND QUEUE 9

2. Mismatched Symbols: The opening and closing symbols don’t match.

3. Empty Stack: Attempting to pop from an empty stack.

4. Non-Empty Stack: The stack isn’t empty at the end of the process.

Reverse Polish Calculator

We can also use a stack to make a Reverse Polish Calculator. There are three forms of notation: prefix,
postfix, and infix. For example, if the expression is a× b, then:

1. Prefix: ×ab

2. Postfix: ab×
3. Infix: a× b

In Reverse Polish notation (postfix), parentheses are not needed. Using a stack, we can calculate the
answer by evaluating the postfix expression. For example, when the character is a number, it is pushed
onto the stack. If the character is an operator, two elements are popped from the stack, and the operation
is performed on those two elements.

In summary, the stack abstract data type is a collection of elements with two main operations: push and
pop. All operations happen at the top, and it follows the Last In, First Out (LIFO) approach.

3.4 Queue

3.4.1 Definition

A Queue is an ordered list in which all insertions take place at one end, the rear, while all deletions take
place at the other end, the front. It follows the First In, First Out (FIFO) rule.

3.4.2 Operations

Several operations can be performed on a queue:

- Create the queue

- Determine if the queue is empty or not.

- Insert (Enqueue) a new entry at one end of the queue, called its rear, if the queue is not full.

- Delete (Dequeue) an entry at the other end of the queue, called its front, if the queue is not empty.

- Retrieve the entry at the front of the queue, if the queue is not empty.

- Clear the queue and make it empty.

3.4.3 Implementation

We can use both linear and circular arrays to implement a queue. For a linear array, we can have two
indices that always increase. However, this might lead to overflow. Additionally, the array may need to
be shifted forward or backward after each enqueue or dequeue operation. For a circular array, we have
the following possibilities:

- Front and rear indices, with one position left vacant.

- Front and rear indices, with a Boolean variable indicating fullness or emptiness.

- Front and rear indices, with an integer variable counting entries.

- Front and rear indices taking special values to indicate emptiness.

CHAPTER 3. ADT, LIST, STACK AND QUEUE 10

3.4.4 Application

Queues are commonly used in various applications, such as in printer queues, airline control systems,
and bank queues.

In summary, the physical model of a queue is a linear array, with the front always in the first position.
All entries are moved up the array whenever the front is deleted. It follows the First In, First Out (FIFO)
rule.

CHAPTER 3. ADT, LIST, STACK AND QUEUE 11

Chapter 4

Trees

In this chapter, we will introduce some fundamental concepts of trees. Trees are hierarchical data
structures widely used for various applications such as representing hierarchical relationships, optimizing
search operations, and organizing data efficiently.

4.1 General Tree

4.1.1 Nodes

A tree is a collection of nodes. The col-
lection can be empty, which is sometimes
denoted as A. Otherwise, a tree consists
of a distinguished node r, called the root,
and zero or more subtrees T1, T2, · · · , Tk,
each of whose roots are connected by a
directed edge to r. The root of each sub-
tree is said to be a child of r, and r is the
parent of each subtree root.

A

B C D

H

E

I J

P Q

F

K L M

G

N

Figure 4.1: General Tree

Each node in a tree has a parent and may have an arbitrary number of children, possibly zero. Nodes
with no children are known as leaves, and nodes with the same parent are called siblings. For example,
in the above graph, A is the parent of D, and B, C, and D are siblings.

A path from node n1 to nk is defined as a sequence of nodes n1, n2, . . . , nk such that ni is the parent of
ni+1 for 1 ≤ i < k. The length of this path is the number of edges on the path, namely k− 1. There is a
path of length zero from every node to itself, and there is exactly one path from the root to each node.

Also, if there is a path from n1 to n2, we call n1 the ancestor of n2, while n2 is the descendant of n1. If
n1 ̸= n2, we call them a proper ancestor or proper descendant.

For any node ni, the depth of ni is the length of the unique path from the root to ni. Thus, the root is
at depth 0. The height of ni is the longest path from ni to a leaf. Therefore, all leaves are at height 0.
For example, in the graph above, E is at depth 1 and height 2.

The height of a tree is equal to the height of the root, and the depth of a tree is the depth of the deepest
leaf. These two values are always equal, representing the longest path from the root to any leaf.

To implement a tree, we could store both the data and a pointer to each child in the node. However,
this approach might not work well for a large number of children. We can solve this issue by keeping the
children of each node in a linked list of tree nodes.

12

4.1.2 Traversal

Suppose we have a directory that includes files and subdirectories. How do we list the names of all the
files?
We can use a technique called tree traversal. To traverse a data
structure means to process every node in the data structure
exactly once, in whatever way you choose. It is possible to pass
the same node multiple times, but it would only be processed
once.

There are three main traversal orders: preorder, inorder, and
postorder traversal. However, as long as the traversal follows
a systematic way of processing data, it is valid.

For example, in the graph on the right, we have:

- Preorder: 013425786

- Inorder: 314075826

- Postorder: 341785620

- Level-order: 012345678

0

1

3 4

2

5

7 8

6

Figure 4.2: Traversal Demonstration

4.2 Binary Tree

4.2.1 Definition

A

B C

Figure 4.3: Generic Binary Tree

A

B

C

Figure 4.4: Degenerated Binary Tree

A binary tree is a tree in which no node has more than two children. The depth of an average binary
tree is considerably smaller than n. For example, even in the worst case — the degenerate tree — the
depth would be n − 1. The average depth is O(h2), and for a special type of binary tree, namely the
binary search tree, the average depth is O(log n).

4.2.2 Some Binary Trees

Figure 4.5: Full Binary Tree Figure 4.6: Complete Binary Tree

A full binary tree is a binary tree in which every node, other than the leaves, has exactly two children.

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled,
and all the nodes in the last level are as far left as possible. This means the nodes in the last level are
filled from left to right.

CHAPTER 4. TREES 13

4.2.3 Implementation

Since a binary tree has at most two children, we can implement it by keeping direct pointers to them.
A node can be represented as an element in a doubly linked list, storing key information along with two
pointers to its left and right children.

We can also implement a node using two pointers: one pointing to its left child and the other pointing
to its next sibling.

4.3 Expression Tree

An expression tree is also a binary tree, which is used to calcu-
late the result of an expression. For example, we can express
the expression ((9− (2+3)) ∗ (7− 1)) using the expression tree
on the right.

In an expression tree, the leaves represent operands, and the
internal nodes represent operators. By using inorder traversal,
we can recover the original expression. From the binary tree,
using postorder traversal, we can obtain the postfix notation.
With the use of a stack, we can implement a calculator, as
shown in the previous chapter.

*

-

9 +

2 3

-

7 1

Figure 4.7: Expression Tree

4.4 Binary Search Tree

4.4.1 Definition

A binary search tree (BST) has the same physical property as
a binary tree, meaning that nodes have at most two children.
However, it also has an ordering property: for each node, all
the nodes in its left subtree have smaller values, and all the
nodes in its right subtree have larger values. This ordering
property turns a binary tree into a binary search tree, and it
implies that all the elements in the tree can be ordered in a
consistent manner.

6

2

1 4

3 5

8

Figure 4.8: Binary Search Tree

4.4.2 Operations

There are some typical operations that can be done on a binary search tree, like make null, find, find
max, find min, insertion and deletion.

For the Find operation, it generally requires returning a pointer to the node in tree T that has key x, or
null if there is no such node. The structure of the tree makes this simple. If T is empty, then we can
just return null. If the key stored at T is x, we can return T . Otherwise, we make a recursive call on a
subtree of T , either left or right, depending on the relationship of x to the key stored in T .

For the Find_min and Find_max operations, these routines return the position of the smallest and largest
elements in the tree, respectively. To perform Find_min, start at the root and go left as long as there is
a left child. The stopping point is the smallest element. The Find_max routine is the same, except that
branching is to the right child.

For insertion, we proceed down the tree. If x is found, we do nothing (or “update” something). Otherwise,
we insert x at the last spot on the path traversed. Duplicates can be handled by keeping an extra field
in the node record that indicates the frequency of occurrence.

CHAPTER 4. TREES 14

However, for deletion, it is more difficult since we need to consider several possibilities. If the node is a
leaf, it can be deleted immediately. If the node has one child, the node can be deleted after its parent
adjusts a pointer to bypass the node. The complicated case is when we need to delete a node with two
children. The general idea is to replace the key of the node with the smallest (leftmost) key of the right
subtree and recursively delete the node.

4.4.3 Analysis

As mentioned before, the average depth of a binary search tree is O(log n). Therefore, intuitively, all
operations, except make_null, should take O(log n) time. The running time of all the operations, except
make_null, is O(d), where d is the depth of the node containing the accessed key. However, how do we
get the average depth of O(log n)?

Proof. Let D(n) be the internal path length for some tree T of n nodes. The internal path length
is the sum of the depths of all nodes in a tree, and D(1) = 0. A n-node tree consists of an i-node
left subtree and an (n− i− 1)-node right subtree, plus a root at depth zero for 0 ≤ i < n.

Then we have D(i) as the internal path length of the left subtree with respect to its root, and we
obtain

D(n) = D(i) +D(n− i− 1) + n− 1

If all subtree sizes are equally likely, which is true for a binary search tree, then the average value
of both D(i) and D(n− i− 1) is

1

n

n−1∑
j=0

D(j)

Which yields

D(n) =
2

n

n−1∑
j=0

D(j)

+ n− 1

■

This recurrence gives an average value of D(n) = O(n log n). Thus, the expected depth of any node
should be O(log n).

Another thing to notice is that for the deletion operation, it favors the left subtree. So, after many inser-
tions and deletions, we may end up with an unbalanced binary tree, which would look like a degenerated
tree. To ensure that all the nodes can be operated on in O(log n) time, we need to make the binary
search tree balanced. This is why we have the AVL tree.

4.5 AVL Tree

4.5.1 Definition

An AVL (Adelson-Velskii and Landis) tree is a binary search tree with
a balancing condition. It is identical to a binary search tree, having the
same physical and ordering properties. However, for every node in the
AVL tree, the heights of the left and right subtrees can differ by at most
1.

With an AVL tree, all tree operations, except insertion, can be performed
in O(log n) time.

To construct the smallest AVL tree of height n, we can use the two small-
est AVL subtrees of heights n− 1 and n− 2. By doing so recursively, we
can find the smallest AVL tree.

6

2

1 4

3

8

7

Figure 4.9: AVL Tree

The height of an empty tree is defined to be −1. Height information is kept for each node. The height
of an AVL tree is at most roughly 1.44 log(n+ 2)− 0.328, but in practice, it is about log(n+ 1) + 0.25.

CHAPTER 4. TREES 15

4.5.2 Operations

All tree operations can be performed in O(log n) time, except possibly insertion. Insertion and deletion
operations need to update the balancing information since they might violate the AVL tree property.
Therefore, we need to restore the property by means of rotations.

A single rotation involves only a few pointer changes and alters the structure of the tree while preserving
the search tree property. Rotations happen from the bottom up, meaning we start checking balancing
conditions from the lowest affected node and move upward.

For insertion into the right subtree of the right child, we perform a Left Rotation; for insertion into the
left subtree of the left child, we perform a Right Rotation.

Figure 4.10: Left Rotation Figure 4.11: Right Rotation

However, single rotation might not work for more complex cases, where the height imbalance is caused
by a node inserted into the tree containing the middle element, while the other subtrees have identical
heights. In such cases, we use a double rotation, which involves four subtrees instead of three.

For insertion into the right subtree of the left child, we use a Left-Right Rotation. For insertion into the
left subtree of the right child, we use a Right-Left Rotation. These double rotations help restore balance
by first performing a single rotation on the child node and then performing a second rotation on the
parent node, ensuring that the AVL tree’s balance property is maintained.

Figure 4.12: Left-Right Rotation Figure 4.13: Right-Left Rotation

These four rotations help us perform all the necessary balancing operations.

To insert a new node with key x into an AVL tree T , we recursively insert x into the appropriate subtree
of Tlr. If the height of Tlr does not change, then we are done. Otherwise, if a height imbalance occurs,
we perform the appropriate single or double rotation depending on x and the keys in T and Tlr. Finally,
we update the height. For example, the method for checking imbalance is demonstrated below:

The implementation of an AVL tree is similar to a binary search tree, with the addition of height
information stored in each node. This height information allows the tree to maintain balance by ensuring
that the difference in height between the left and right subtrees of any node is at most 1.

CHAPTER 4. TREES 16

4.6 B-Tree

4.6.1 Definition

A B-Tree of order m is a tree with the following properties:

- All the leaf nodes must be at the same level (have the same depth).

- All non-leaf nodes except the root must have at least ⌈m
2 ⌉ − 1 keys and a maximum of m− 1 keys.

- All non-leaf nodes except the root (i.e., all internal nodes) must have children between ⌈m
2 ⌉ and m.

- The root is either a leaf or has between 2 and m children.

- A non-leaf node with n− 1 keys must have n children.

- All the key values within a node must be in ascending order.

21 48 72

12 15 25 31 41 59 84 91

1, 4, 8, 11 12, 13 15, 18, 19 21, 24 25, 26 31, 38 41, 43, 46 48, 49, 50 59, 68 72, 78 84, 88 91, 92, 99

Figure 4.14: B-tree of order 4

A B-tree of order 4 is also known as a 2-3-4 tree; a B-tree of order 3 is also known as a 2-3 tree.

4.6.2 Operations

To insert a key into a node, we need to note the maximum number of values that the node can store.
If the node isn’t full, we can simply insert the key. However, there are some cases that need to be
considered:

To insert 1, we find the location. However, since the leftmost node is full, we cannot insert it there. This
can be solved by splitting the node into two nodes with two keys, then adjusting the information of the
parent. Next, we try to insert 19. Since the rightmost node is full, we need to split it into two nodes
with two children. Then, we continue splitting upwards to the root until we either reach the root node
or find a node with fewer than two children.

22

16 41 58

8, 11, 12 16, 17, 18 22, 23, 31 41, 52 58, 69, 61

Figure 4.15: Original Tree

22

11 16 41 58

1, 8 11, 12 16, 17, 18 22, 23, 31 41, 52 58, 69, 61

Figure 4.16: Insert 1

CHAPTER 4. TREES 17

16 21

11 18 41 58

1, 8 11, 12 16, 17 18, 19 22, 23, 31 41, 52 58, 69, 61

Figure 4.17: Insert 19

The depth of a B-tree is at most ⌈log⌈m
2 ⌉ n⌉. At each node along the path, we perform O(logm)

work to determine which branch to take. An insertion or deletion could require O(m) work to fix up
all the information at the node. The worst case for insertion and deletion would be O(m logmn) =

O
(

m
logm log n

)
.

In summary, trees are used in operating systems, compiler design, and searching. In practice, all the
balanced tree schemes are worse than the simple binary search tree, but this is acceptable.

CHAPTER 4. TREES 18

Chapter 5

More on Tree

5.1 Tries

5.1.1 Definition

A trie, also called a digital tree, radix tree, or prefix tree, is a special type of tree used to store associative
data structures. The name trie comes from its use for retrieval, because the trie can find a single word
in a dictionary with only a prefix of the word.
For example, strings are stored in a top-to-bottom
manner based on their prefixes in a trie. All prefixes
of length 1 are stored at level 1, all prefixes of length
2 are stored at level 2, and so on. For the string
set S = {bear, bell, bid,bull, but, sell, stock, stop},
we can have the tree structure as shown on the right.

This figure shows how the strings are stored in the
trie. Inserting and deleting words in this tree is
straightforward. For example, when typing “belt”
it can be inserted in the subtree starting from
b -> e -> l.

Unlike a binary search tree, no node in a trie stores
the key associated with that node; instead, its po-
sition in the tree defines the key with which it is
associated.

b

e

a

r

l

l

i

d

u

l

l

y

s

e

l

l

t

o

c

k

p

Figure 5.1: Tries

All the descendants of a node share a common prefix in the string associated with that node, and the
root is associated with the empty string.

5.1.2 Applications

A trie can also be used to replace a hash table, offering the following advantages:

1. Faster lookup: Looking up data in a trie is faster than the worst case of a hash table. For a trie, the
time complexity is O(m), where m is the length of the search string. However, the time for an imperfect
hash table would be O(n), where n is the total number of strings.

2. No collisions: There are no collisions of different keys in a trie, unlike hash tables, where collisions
can occur when two keys map to the same hash value.

3. No need for a hash function: In a trie, there is no need to provide a hash function or change it as
more keys are added, unlike hash tables that require such adjustments.

4. Alphabetical ordering: A trie can provide an alphabetical ordering of the entries by key, making it
useful for applications like autocomplete or lexicographical ordering.

19

A common application of a trie is storing a predictive text or autocomplete dictionary, such as those
found on mobile phones. It is also used in web browsers, which autocomplete your text or show possible
completions for the text you are typing. Additionally, a trie can act as an orthographic corrector, checking
whether every word you type exists in a dictionary.

5.1.3 Analysis

A standard trie uses O(n) space and supports searches, insertions, and deletions in time O(dm), where
n is the total size of the strings in S, m is the size of the string parameter of the operation, and d is the
size of the alphabet.

5.2 B-Tree

Here we continue the discussion on B-Trees.

A B-Tree is a self-balanced search tree with multiple keys in each node and can have more than two
children per node. The properties of B-Trees have been discussed in the previous chapter.

Following these properties, for example, a B-Tree of order 4 contains a maximum of 3 key values in a
node and a maximum of 4 children for a node.

21 48 72

12 15 25 31 41 59 84 91

1, 4, 8, 11 12, 13 15, 18, 19 21, 24 25, 26 31, 38 41, 43, 46 48, 49, 50 59, 68 72, 78 84, 88 91, 92, 99

Figure 5.2: B-tree of order 4

5.2.1 Operations

To search for a certain element in a B-Tree, we first read the value from the user. Then, we compare
the search element with the first key value of the root node in the tree. If they match, we terminate the
function immediately. If they do not match, we check whether the search element is smaller or larger,
then move to the appropriate subtree where the element could be found. This process is done recursively
until we either find the exact match or complete the comparisons with the last key value in a leaf node.

In a B-Tree, a new element must be added only at a leaf node. This means new key values are always
attached to leaf nodes.

To perform an insertion, we first check if the tree is empty. If it is empty, we create a node with the new
key value and insert it into the tree as the root node. Otherwise, we find the appropriate leaf node where
the new key value can be added, using binary search tree logic. If the leaf node has an empty position,
we add the new key value to the leaf node, maintaining the ascending order of key values within the
node.

If the leaf node is already full, we split that leaf node by sending the middle value to its parent, and
repeat this process until the value is placed into a node. If the split reaches the root, the middle value
becomes the new root node, increasing the height of the tree by one.

Following, we construct a B-Tree of order 3 by inserting numbers from 1 to 8.

CHAPTER 5. MORE ON TREE 20

1 1 2

2

1 3

2

1 3 4

For 1 and 2, we can directly do the insertion. For 3, since the node is full, we split the node by sending
the middle value 2 to the parent node. Since there is an empty position, we can directly insert 4.

2 4

1 3 5

2 4

1 3 5 6

Since the rightmost node is full, we insert 5 by sending the middle value to the parent node and split
the node. Then, we can directly insert 6.

4

2 6

1 3 5 7

4

2 6

1 3 5 7 8

Since the rightmost node is again full, we insert 7 by sending the middle value and splitting the node.
Since the parent is also full, we further split it and send the middle value, in this case 4, to the parent
node. To insert 8, it can be done directly.

To do deletion, if the key to be deleted is in a leaf and it contains more than the minimum number of
keys, then this key can be deleted with no further action. If it is not a leaf, swap it with its successor
under the natural order of the keys, then delete the key from the leaf.

If the node contains the minimum number of keys, consider the two immediate siblings of the node. If
one of these siblings has more than the minimum number of keys, then redistribute one key from this
sibling to the parent node, and one key from the parent to the deficient node. This is a rotation that
balances the nodes.

If both immediate siblings have exactly the minimum number of keys, then merge the deficient node
with one of the immediate sibling nodes and one key from the parent node. If this leaves the parent node
with too few keys, then the process is propagated upward.

5.2.2 Analysis

The depth of a B-Tree is h, then

h ≤ logt
n+ 1

2
, t =

⌈m
2

⌉
, n = the number of keys.

The search, insertion, and deletion time is O(t logt n).

CHAPTER 5. MORE ON TREE 21

Chapter 6

Hashing

From linear search, which takes O(n) time, to binary search, which takes O(log n) time, the time is
reduced. However, is there another data structure that allows better time? The answer is hashing.

6.1 Introduction

In some applications, fully utilizing the entire array is rare, leading to sparse arrays or sparse matrices.
To avoid the multiplication operations required to calculate the index of an entry, we use an access table.
This auxiliary table contains values like 0, n, 2n, 3n, . . . , (m − 1)n. When referencing the rectangular
array, the index for entry [i, j] is computed by accessing the value at position i in the auxiliary table,
adding j, and using the resulting position.

A table with index set I and base type T can be viewed as a function from I to T , along with two main
operations:

- Table access: Evaluate the function at any index in I.

- Table assignment: Modify the function by changing the value at a specified index in I to a new value.

Insertion involves adding a new element x to the index set I and defining the corresponding value for
the function at x. Deletion removes an element x from the index set I, restricting the function to the
resulting smaller domain.

However, array indices are not natural identifiers for the items we want to store, access, and retrieve.
This limitation is overcome by using hashing.

6.1.1 Hashing

Hashing is a technique used to perform insertions, deletions, and lookups in constant average time.
However, hashing does not efficiently support tree operations that require ordering information among
elements. There are three important components of hashing:

1. Hash function: to generate a key;

2. Hash table: to store the elements;

3. Collision resolution: to resolve conflicts when two keys hash to the same index.

A hash table is an abstract data type that allows storing and retrieving elements in O(1) time. This is
true when the indices are known and the value at the target index of a store operation can be discarded.
Without a complete set of items, we cannot determine the index of an element in a sorted list.

To solve this problem, we use the item as a key and convert it into unique integers that can be used as
array indices. Since the index integer is not known at the entry of an item, it would be helpful if the
item itself could be used as a key to index the cell where it will be stored. For example, to store names
in an array, rather than assigning arbitrary indices, we can sum the ASCII values of each character in
the key (e.g., a = 1,b = 2, . . .).

22

6.1.2 General Idea

As defined previously, a function that performs the conversion is called a hash function. The conversion
process is called hashing, and the storage structure used is called a hash table or scatter-storage.

In general, a hash table is an array of fixed size that contains keys. Each key is associated with a value
and mapped to a number in the range 0 to H_SIZE − 1, placing it in the corresponding cell.

The mapping of keys to indices is done by the hash function, which ideally should be simple to compute
and should ensure that distinct keys are placed in different cells. However, this is challenging because
there are a finite number of cells and a virtually limitless number of potential keys. Therefore, the goal
is to design a hash function that distributes the keys as evenly (uniformly) as possible among the cells.

There are several important issues that need to be addressed, which will be discussed in this chapter:

1. Choosing the hash function.

2. Handling collisions.

3. Handling deletions.

6.1.3 Hash Table

The idea of a hash table is to allow many of the different possible keys that might occur to be mapped
to the same location in an array under the action of the index function. This is sometimes referred to as
scatter-storage or key-transformation.

A hash function takes a key and maps it to an index in the array. However, two or more records may be
mapped to the same location, leading to a collision. Therefore, a collision resolution procedure must be
devised to handle this situation.

6.2 Hash Function

6.2.1 Analysis

The two principal criteria in selecting a hash function are that:

1. it should be easy and quick to compute,

2. it should achieve an even distribution of the keys that actually occur across the range of indices.

If the input keys are integers, then simply returning key mod H_SIZE is generally a reasonable strategy.
For example, student_ID mod 10000 would be a reasonable strategy. Also, it is usually a good idea to
ensure that the table size is prime. When the input keys are random integers, this function is simple to
compute and also distributes the keys evenly.

6.2.2 Truncation

Truncation can be done by ignoring part of the key and using the remaining part directly as the index
(considering non-numeric fields as their numerical codes). For example, if the keys are eight-digit integers
and the hash table has 1000 locations, then the first, second, and fifth digits from the right make the
hash function, so that 62538194 maps to 394. Although this method is fast, it often fails to distribute
the keys evenly through the table.

6.2.3 Folding

We can also partition the key into several parts and combine the parts in a convenient way (often using
addition or multiplication) to obtain the index. For example, we can map 62538194 to 625+ 381+ 94 =
1100, which is truncated to 100.

CHAPTER 6. HASHING 23

6.2.4 Modular Arithmetic

We can use modular arithmetic to convert the key into the index that we want. We can simply use the
ASCII values of all the characters in the string, and then return the result mod H_SIZE.

For example, ‘abcd’ mod 100 = (64 + 65 + 66 + 67)%100 = 62.

We can also take only 3 characters and use hash_val = key[0] + 27*key[1] + 729*key[2], and then
again return the hash_val mod H_SIZE, assuming that the key has at least two characters plus the
NULL terminator. If the three characters are random, and the table size is 10007, then we would have
a reasonably equitable distribution. However, since English is not random, the percentage of the table
being hashed to could be less than expected.

We can improve the hash function by using hash_val = hash_val << 5 + *key++, then returning
hash_val mod H_SIZE. This hash function involves all the characters in the key by computing:

keySize - 1∑
i=0

key[keySize - i] × 32i,

which follows Horner’s Rule.

It is common to not use all the characters in the key, since the length and properties of the key would
influence the choice.

6.3 Collision Resolution

Though a hash table is an efficient data structure, there could be cases where different elements share the
same index, causing a collision. Thus, we need to handle such collisions, and there are several resolutions.

6.3.1 Open Hashing

The first strategy, commonly known as open hashing or separate chaining, is to keep a list of all elements
that hash to the same value.
To illustrate, we assume that the keys are the first 10 perfect squares,
where the hashing function is given by hash(x) = x mod 10.

In open hashing, each node contains a linked list, allowing multiple ele-
ments to be stored at the same index.

We can perform find in open hashing by using the hash function to de-
termine which list to traverse. Then, we traverse this list in the normal
manner, returning the position where the item is found.

To perform insertion, we first traverse the list to check whether the ele-
ment is already present. If it is a new element, it is inserted either at the
front or the end of the list. Often, new elements are inserted at the front,
as this is convenient and because recently inserted elements are frequently
the most likely to be accessed again soon.

The deletion routine is straightforward, similar to linked lists. After
performing a find operation, we delete the item as we would in a linked
list.

0 → 0

1 → 1 → 81

2 →

3 →

4 → 4 → 64

5 → 25

6 → 16 → 36

7 →

8 →

9 → 9 → 49

The use of linked storage can save a considerable amount of space. It allows for simple and efficient
collision handling, and the size of the hash table no longer needs to exceed the number of records we
have. Additionally, deletion is faster compared to other methods.

However, all the pointers (links) require space, and even if the number of records is small, the space
used is comparatively larger. Thus, it takes longer time to allocate the new cells, and it requires the
implementation of another data structure. Thus, we introduce Closed Hashing.

CHAPTER 6. HASHING 24

6.3.2 Closed Hashing

In closed hashing, if a collision occurs, alternate cells are tried until an empty cell is found.

For example, cells h0(x), h1(x), · · · are tried in succession where hi(x) = (hash + f(i)) mod H_SIZE,
with f(0) = 0.

The function f(i) is called the collision resolution strategy. Because all the data goes inside the table,
a bigger table is needed for closed hashing than for open hashing. Generally, the load factor should be
below l = 0.5 for closed hashing.

Again, we want to perform insertion. An array must be declared that will hold the hash table. Then,
all locations in the array need to be initialized to show that they are empty. To insert a record, the hash
function for the key is first calculated. If the corresponding location is empty, then the record can be
inserted. Otherwise, insertion of the new record would not be allowed, which is what we call a collision.

For the find operation, we again calculate the key first. If the desired record is in the corresponding
location, then the retrieval has succeeded. Otherwise, we follow the same procedure as for collision
resolution, examining all locations until we find the correct record. However, if the position is empty,
then no record with the given key is in the table, and the search is thus unsuccessful.

What we haven’t discussed yet is the way to resolve collisions. In general, there are three methods.

Linear Probing

This is the simplest method to resolve a collision. Starting with the hash address where the collision
happens, do a sequential search for the desired key or an empty location.
However, data could become clustered in this
method. That is, records start to appear in long
strings of adjacent positions with gaps between the
strings.

For example, given x = 89, 18, 49, 58, 69, with
hash(x) = x mod 10, we can perform insertion as
shown on the right.

For values 89 and 18, they can be inserted directly
since the corresponding cell for the address is empty.
However, when inserting 49, the key value 9 is re-
peated. Then it finds the next available cell, which
in this case would be at position 0. The same applies
to 58 and 69.

Empty Table 89 18 49 58 69

0 49 49 49
1 58 58
2 69
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

Although they can all be inserted, the time to search for an empty cell may be long. Since the records
are not distributed uniformly and become progressively more unbalanced, this leads to the problem of
primary clustering. This problem is essentially one of instability. If a few keys happen randomly to be
near each other, then it becomes more and more likely that other keys will join the cluster.

Assuming a very large table and that each probe is independent of the previous probes, the number of
probes for a successful search is equal to the number of probes required when the particular element is
inserted. When an element is inserted, it is done as a result of an unsuccessful search. We can use the
cost of an unsuccessful search to compute the average cost of a successful search.

Since the fraction of empty cells is 1− λ, the number of cells we expect to probe is 1
1−λ .

Then, it can be shown that the expected number of probes using linear probing is roughly

1

2

(
1 +

1

(1− λ)2

)
for insertions and unsuccessful searches. It takes roughly

1

2

(
1 +

1

(1− λ)

)
for successful searches. Here, λ is the ratio of the number of elements in the hash table to the table size.

CHAPTER 6. HASHING 25

This is inefficient since, intuitively, we need to keep probing, which takes longer. As λ increases, the
expected number of probes also increases. This issue becomes more significant if the table is expected
to be more than half-full.

Thus, we have quadratic probing.

Quadratic Probing

Quadratic probing avoids the primary clustering problem of linear probing. If there is a collision at hash
address H, the method called quadratic probing looks in the table at locations h+0, h+1, h+4, h+9, · · ·,
that is, at location h+ i2 for i = 0, 1, 2, · · ·.
This reduces clustering, but it is obvious that it will
not probe all locations in the table. The idea is that
if quadratic probing is used and the table size is
prime, then a new element can always be inserted
if the table is at least half empty.

Here we use the same example. Now we use
quadratic probing instead. After 18 and 89 being
inserted, for 49, it goes to (9 + 12) mod 10 = 0
since location 9 is occupied, for 58, it goes to (8+22)
mod 10 = 2, and for 69 it goes to (9+22) mod 10 =
3.

Note that if the table is even more than half full,
insertion could fail. It is also crucial that the table
size is a prime number. Otherwise, the number of
alternate locations can be severely reduced.

Empty Table 89 18 49 58 69

0 49 49 49
1
2 58 58
3 69
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

Standard deletion cannot be performed in a closed hash table since the cell might have caused a collision
to pass it. Simply put, deleting an entry could break the probing chain, causing searches to miss other
items. Thus, lazy deletion is required.

In lazy deletion, we delete an entry by placing a special marker or key in the deleted position. This
marker indicates that the position is free for future insertions but should not be treated as empty when
searching for other items — ensuring the probing sequence remains unbroken.

Random Probing

Rather than having the increment depend on the number of probes already made, we can let it be a
simple function of the key itself. For example, we could truncate the key to a single character and use
its code as the increment.

For random probing, we use a pseudo-random number generator to obtain the increment. The generator
should always produce the same sequence when given the same seed. This method is excellent at avoiding
clustering, but it is likely to be slower than others.

Double Hashing

Another closed hashing method is double hashing. For double hashing, one popular choice is:

f(i) = i× h2(x).

We apply a second hash function to x and probe at distances h2(x), 2h2(x), . . ., and so on. However,
a poor choice of h2(x) could be disastrous. The function must never evaluate to zero, and it needs to
ensure that all cells can be probed.

For instance, the obvious choice h2(x) = x mod 9 would not help if 99 were inserted into the input in
the previous example. A function such as:

h2(x) = R− (x mod R),

CHAPTER 6. HASHING 26

with R being a prime number smaller than H_SIZE,
works well. One may also perform triple hashing,
and so on.

Again, we perform insertion for x = 89, 18, 49, 58, 69
using double hashing. Here, we have h2(x) = R− (x
mod R), with R = 7.

After inserting 89 and 18, 49 causes a collision. Then
we use h2(49) = 7 − (49 mod 7) = 7, so it goes to
(7 + 49) mod 10 = 6. Inserting 58 also causes a
collision, then we have h2(58) = 7−(58 mod 7) = 5,
so it goes to (5 + 58) mod 10 = 3.

Empty Table 89 18 49 58 69

0 69
1
2
3 58 58
4
5
6 49 49 49
7
8 18 18 18 18
9 89 89 89 89 89

6.3.3 Rehashing

There could be cases where the hash table becomes too
full, causing the running time for operations to deterio-
rate, especially when there are too many deletions inter-
mixed with insertions.

To solve this issue, we can build another table that is
about twice as large with an associated new hash func-
tion. Then, we scan the entire original hash table, com-
pute the new hash value for each element, and insert it
into the new table. This process is known as rehashing.

For example, for a table of size 7, let h(x) = x mod 7.
After inserting x = 13, 15, 24, 6, we insert 23, which makes
the table now 70% full. Thus, we create a new table with
size 17. The new hash function is then h(x) = x mod 17.
The old table is scanned, and elements 6, 23, 24, 13, and
15 are then inserted sequentially.

The running time is O(n), which is expensive. Therefore,
it should not be done too frequently. This leads us to the
concept of extendible hashing.

0 6
1 15
2
3 24
4
5
6 13

0 6
1 15
2 23
3 24
4
5
6 13

0
1
2
3
4
5
6 6
7 23
8 24
9
10
11
12
13 13
14
15 15
16
17

When the amount of data is too large to fit in main memory and must be stored on disk, we minimize
disk access by using a tree.

In definition, the root of the tree is called the directory, and the leaves are called buckets. The number of
bits used by the root is called the global depth, and the bucket size is the maximum number of elements
that a leaf can contain.

Suppose that our data consists of several 6-bit integers. With global depth D equal to 2, the root of the
tree contains 4 pointers determined by the leading two bits of the data. Each leaf can hold up to m = 4
elements.

CHAPTER 6. HASHING 27

For example, we have the following tree. To insert
36, we first convert it to binary 1001002. The hash
function here is the D most significant bits (MSBs),
which is the 2 MSBs in this case. Since the bucket of
00 is full, and the global depth is equal to the bucket
depth, the directory is split, and the roots now have
D = 3.
Then, we update the content by inserting 1001002
into the directory 100. Note that for the same
bucket, there could be more than one pointer point-
ing to it.
Next, to insert 0000002, we again encounter a colli-
sion. However, since the global depth is now larger
than the bucket depth, the bucket itself is split in-
stead of the directory. The element can then be in-
serted.

00 01 10 11

(2)

000100

001000

001010

001011

(2)

010100

011000

(2)

100000

101000

101100

101110

(2)

111000

111001

Figure 6.1: Original

000 001 010 011 100 101 110 111

(2)

000100

001000

001010

001011

(2)

010100

011000

(3)

100000

100100

(3)

101000

101100

101110

(2)

111000

111001

Figure 6.2: Insertion 100100

000 001 010 011 100 101 110 111

(3)

000000

000100

(3)

001000

001010

001011

(2)

010100

011000

(3)

100000

100100

(3)

101000

101100

101110

(2)

111000

111001

Figure 6.3: Insertion 000000

It is possible that several directory splits will be required if the elements in a leaf agree in more than
D + 1 leading bits, i.e., overflow. For example, to insert 1110102, 1110112, 1111002, the directory size
must be increased to 4.

This algorithm does not work when there are more than m duplicates. It is important for the bits to be
fairly random.

In summary, hash tables can be used to implement the insertion and find operations in constant average
time. It is especially important to pay attention to details such as the load factor when using hash tables.
The choice of hash function is also crucial, especially when the key is not a short string or integer.

For open hashing, the load factor should be 1, meaning all the cells can be filled. For closed hashing,
the load factor should not exceed 0.5, unless unavoidable. It is not possible to find the minimum or
maximum since there is no sorting order.

In applications, hash tables can be used in compilers to keep track of declared variables in source
code. They are useful for any graph theory problem where nodes have real names instead of numbers.
Additionally, hash tables are commonly used in programs that play games or even online spelling checkers.

CHAPTER 6. HASHING 28

Chapter 7

Heaps

Here, we continue the discussion on queues.

7.1 Introduction

In some applications, a simple queue may not be the best strategy for completing jobs. Problems arise
when small jobs take longer to finish, or important jobs are not processed first.

That’s why we have heaps, which implement a priority queue. Unlike a regular queue, which follows
the first-in, first-out (FIFO) principle, a priority queue selects an entry based on specific properties and
places it at the front to be processed first.

For example, in a job queue, various algorithms can be implemented to manage tasks, such as first-come,
first-served, shortest-job-first, longest-job-first, priority-based scheduling, or even a combination of these
methods.

7.1.1 Priority Queue

A priority queue consists of entries, each containing a key called the priority of the entry. A priority
queue supports two primary operations in addition to the usual creation, size, full, and empty checks:
Insert and Delete_Min. Insertion is straightforward, while Delete_Min finds, returns, and removes
the entry with the highest priority. If all entries have equal priorities, the queue follows the FIFO (first-in,
first-out) rule.

Several possible implementations include a simple linked list, a sorted contiguous list, an unsorted list,
and a binary search tree.

7.2 Binary Heaps

Binary Heaps (or Heaps) have two properties: the structure property and the heap order property.
For the structure property, the heap must be a complete binary tree.

As with AVL trees, an operation on a heap can destroy one of these properties. Therefore, a heap
operation must not terminate until all heap properties are restored.

7.2.1 Structure Property

A heap is a binary tree that is completely filled (a complete tree), with the possible exception of the
bottom level, which is filled from left to right.

A complete binary tree of height h has between 2h and 2h+1 − 1 nodes. This implies that the height of
a complete binary tree is ⌊log n⌋, which is clearly O(log n).

29

Because a complete binary tree is so regular, it can be represented in an array, and no pointers are
necessary. For example, to represent the tree on the left, we can have:

A

B

D

H I

E

J

C

F G

Figure 7.1: Binary Heap

A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 7.1: Implementation

For any element in array position i, the left child is in position 2i, the right child is in the cell after the
left child (2i + 1), and the parent is in position

⌊
i
2

⌋
. Thus, not only are pointers not required, but the

operations required to traverse the tree are extremely simple.

For example, A is in position 1, thus it has no parent. Its children will be in positions 2 and 3, which
are B and C. For B in position 2, its parent will be 1, which is A. Its children will be in positions 4 and
5, which are D and E.

The problem is that the estimation of the maximum heap size is required in advance.

7.2.2 Heap Order Property

This property allows operations to be performed quickly. For a heap, the smallest element should be
at the root so that the operation to remove it is efficient. By the heap order property, the minimum
element can always be found at the root. Thus, we have the extra operation, find_min, which can be
performed in constant time O(1).

Since we want to be able to find the minimum quickly, it makes sense that the smallest element should
be at the root. If we consider that any subtree should also be a heap, then any node must be smaller
than all of its descendants. By applying this logic, we arrive at the heap order property:

In a heap, for every node X, the key in the parent of X is smaller than or equal to the key in X, except
for the root.

7.3 Operations

To perform insertions, we create a hole in the next available location. If x can be placed in the hole
without violating the heap order, then we do so, and the insertion is complete. Otherwise, we slide the
element from the parent node of the hole into the hole, thus bubbling the hole up toward the root. We
continue this process until x can be placed in the hole. This strategy is called percolate up.

For example, we use the following method to insert 14 into a heap.

13

21

24

65 26

31

32

16

19 68

Figure 7.2: Create hole

13

21

24

65 26 32 31

16

19 68

Figure 7.3: Compare

CHAPTER 7. HEAPS 30

13

24

65 26

21

32 31

16

19 68

Figure 7.4: Compare

13

14

24

65 26

21

32 31

16

19 68

Figure 7.5: Insert 14

The time to perform the insertion can be as much as O(log n) if the element to be inserted is the new
minimum and is percolated all the way to the root. It has been shown before that 2.607 comparisons
are required on average to perform an insertion. On average, the insertion moves an element up 1.607
levels.

Deletions are handled in a manner similar to insertions. We only delete from the top since it is the
smallest value. When the root is deleted, a hole is created. Then, we slide the smaller of the hole’s
children into the hole, thus pushing the hole down one level. We repeat this step until x can be placed
in the hole. Thus, our action is to place x in its correct spot along a path from the root containing the
minimum children. The rearranging will typically take less than O(log n).

For example, we use the following method to perform deletion:

13

14

19

65 26

21

32 31

16

19 68

14

19

65 26

21

32 31

16

19 68

14

19

65 26

21

32 31

16

19 68

14

19

65 26

21

32 31

16

19 68

14

19

26

65

21

32 31

16

19 68

14

19

26

65 31

21

32

16

19 68

There are some other heap operations. We can find the minimum in constant time. However, it would
be difficult, though possible, to find the maximum, given that there is no ordering information.

To build a heap, we take n keys and place them into an empty heap. We could then perform n successive
inserts. This will take O(n) on average but O(n log n) in the worst case. Another way is to place the n
keys into the tree in any order, then perform percolate-down on half of the nodes. For example, to insert
15 keys, we can perform percolate-down starting from the 7th node.

CHAPTER 7. HEAPS 31

150

80

30

100 20

10

90 60

40

70

50 120

110

140 130

150

80

30

100 20

10

90 60

40

70

50 120

110

140 130

150

80

30

100 20

10

90 60

40

50

70 120

110

140 130

150

80

30

100 20

10

90 60

40

50

70 120

110

140 130

150

80

20

100 30

10

90 60

40

50

70 120

110

140 130

150

80

20

100 30

10

90 60

40

50

70 120

110

140 130

150

10

20

100 30

60

90 80

40

50

70 120

110

140 130

10

20

30

100 150

60

90 80

40

50

70 120

110

140 130

In this process, we start with the last node that is not a leaf node, compare it with its left and right
children, and interchange the node with the larger of its two children. We continue this process with the
node until it becomes a leaf node or until the heap property is restored.

To perform a k-selection, we could find the k-th smallest or largest element in a set. To build a heap, the
average time complexity is O(n), and the worst-case time complexity is O(n log n). To delete from a heap,
the time complexity is O(log n). Hence, the total runtime for the k-selection problem is O(m+ k log n).

For small k, the running time is dominated by the heap-building operation, making it O(n). For larger
values of k, the running time is O(k log n).

Alternatively, we could build a smaller heap tree of k elements and then compare the remaining entries
against the heap. If the new element is larger, it replaces the root; otherwise, it is discarded. To build a
heap of k elements, the time complexity is O(k). The time to process each of the remaining elements is
O(1). To test if an element should be added to the heap, we incur an additional O(log k) to delete the
root and insert the new element if necessary.

Thus, the total time complexity is O(k + (n − k) log k) = O(n log k). This algorithm also provides a
bound of n log n for finding the median.

CHAPTER 7. HEAPS 32

Chapter 8

Sorting

Sorting is simply the process of ordering data in a consistent manner, such as organizing cards, telephone
name lists, student name lists, etc.

Each element is usually part of a collection of data called a record. Each record contains a key, which
is the value to be sorted, while the remainder of the record consists of satellite data. Here, we have two
assumptions: the keys are integers, and the sorting process uses internal memory.

There are several algorithms to sort in O(n2), such as insertion sort. There is also an algorithm like
Shell sort, which is very simple to code, runs in O(n2), and is efficient in practice. Additionally, there are
some slightly more complicated sorting algorithms that take O(n log n). However, any general-purpose
sorting algorithm requires Ω(n log n) comparisons.

8.1 Introduction

8.1.1 Preliminaries

In internal sort, an array containing the elements and an integer containing the number of elements will
be passed to the algorithm.

We assume that N , the number of elements passed to our sorting routines, has already been checked and
is legal.

We require the existence of the < and > operators, which can be used to place a consistent ordering on
the input.

8.1.2 Operations

In sorting, there are several operations.

Permutation

A permutation of a finite set S is an ordered sequence of all the elements of S, with each element appearing
exactly once. A k-permutation of S is an ordered sequence of k elements of S, with no element appearing
more than once in the sequence.

For example, for S = {a, b, c}, there are 6 permutations. For a set of n elements, there are n! permuta-
tions.

Inversion

An inversion in an array of numbers is any ordered pair (i, j) having the property that i < j but
a[i] > a[j].

33

For example, the input list 34, 8, 64, 51, 32, 21 has nine inversions, namely: (34,8), (34,32), (34,21),
(64,51), (64,32), (64,21), (51,32), (51,21) and (32,21). Notice that this is exactly the number of swaps
that need to be performed by insertion sort.

8.2 Bubble Sort

8.2.1 Operation

Bubble sort is done by scanning the list from one end to the other, and whenever a pair of adjacent keys
is found to be out of order, they are swapped. In this pass, the larger key in the list will have bubbled
to the end, but earlier keys may still be out of order.

Bubble sort is probably the easiest algorithm to implement but the most time-consuming of all the
algorithms, other than pure random permutation. The basic idea underlying bubble sort is to pass
through the file sequentially several times.

In bubble sort, each pass consists of comparing each element in the file with its successor and interchang-
ing the two elements if they are not in proper order. After each pass, the largest element x[n − i] is in
its proper position within the sorting array.

Original 34 8 64 51 32 21 Number of Exchanges

After p = 1 8 34 21 64 51 32 4

After p = 2 8 21 34 32 64 51 3

After p = 3 8 21 32 34 51 64 2

After p = 4 8 21 32 34 51 64 0

After p = 5 8 21 32 34 51 64 0

After p = 6 8 21 32 34 51 64 0

In this example, for the first pass, it begins from the right. Since 21 > 32, it swaps, then we have
34, 8, 64, 51, 21, 32. Then we check with 51 and 21, they are out of order, so we swap again, then we have
34, 8, 64, 21, 51, 32. Recursively doing so, we get the sequence 8, 34, 21, 64, 51, 32. The sorting will stop
when p = 6, which is the number of elements to be sorted.

8.2.2 Analysis

There are in total n− 1 passes and n− 1 comparisons on each pass without the improvement. Thus, the
total number of comparisons is (n− 1)2 = n2 − 2n+ 1, which is O(n2).

We can improve this algorithm by stopping the swap when the number of exchanges is equal to 0, i.e., all
the elements are in proper order. With the improvement, the sorting will be (n− 1)+ (n− 2)+ · · ·+1 =
n(n+1)

2 , which is also O(n2).

The number of interchanges depends on the original order of the file. However, the number of interchanges
cannot be greater than the number of comparisons. It is likely that the number of interchanges, rather
than the number of comparisons, takes up the most time in the program’s execution.

For bubble sort, it requires little additional space. We only need one additional record to hold the
temporary value for interchanging and several simple integer variables. It is O(n) in the case that the
file is completely sorted (or almost completely sorted), since only one pass of n− 1 comparisons (and no
interchanges) is necessary to establish that the file is sorted.

CHAPTER 8. SORTING 34

8.3 Insertion Sort

8.3.1 Operation

Insertion sort again consists of n − 1 passes. For pass p = 2 through n, insertion sort ensures that the
elements in positions 1 through p are in sorted order. Insertion sort makes use of the fact that elements
in positions 1 through p− 1 are already known to be in sorted order.

Initially, x[0] may be thought of as a sorted file of one element. After each repetition of the loop, the
elements x[0] through x[k] are in order.

Original 34 8 64 51 32 21 Positions Moved

After p = 1 34 8 64 51 32 21 0

After p = 2 8 34 64 51 32 21 1

After p = 3 8 34 64 51 32 21 0

After p = 4 8 34 51 64 32 21 1

After p = 5 8 32 34 51 64 21 3

After p = 6 8 21 32 34 51 64 4

In this example, for the first pass, we treat 34 as sorted, thus no move is needed. Then we ‘insert’ 8,
since it is smaller than 34, it is moved before 34. By doing so recursively, we can have a sorted list.

8.3.2 Analysis

The simple insertion sort may be viewed as a general selection sort in which the priority queue is
implemented as an ordered array. Only the preprocessing phase of inserting the elements into the priority
queue is necessary. Once the elements have been inserted, they are already sorted, so no selection is
necessary.

If the initial file is sorted, only one comparison is made on each pass, so the sort is O(n). However, if
the file is initially sorted in reverse order, the sort is O(n2), since the total number of comparisons is
(n− 1) + (n− 2) + · · ·+ 2 + 1 = (n−1)n

2 , which is still O(n2).

The simple insertion sort is still usually better than the bubble sort. The closer the file is to sorted order,
the more efficient the simple insertion sort becomes. The average number of comparisons in the simple
insertion sort is also O(n2), considering all possible permutations of the input array.

The space requirements for the sort consist of only one temporary variable y. Insertion sort makes O(n2)

comparisons of keys and O(n2) movements of entries. It makes n2

4 + O(n) comparisons of keys and
movements of entries when sorting a list of length n in random order.

To improve, we can use a binary search. This reduces the total number of comparisons from O(n2) to
O(n log n). However, the moving operation still requires O(n2) time. So the binary search does not
significantly improve the overall time requirement.

We can also improve the algorithm by using list insertion. This reduces the time required for insertion
but not the time required for searching for the proper position. The average number of inversions in an
array of n distinct numbers is n(n−1)

4 .

For any list L of numbers, consider Lr, which is the list in reversed order. Consider any pair of two
numbers in the list (x, y) with y > x. In exactly one of L and Lr, this ordered pair represents an
inversion. The total number of these pairs in a list L and its reverse Lr is n(n−1)

2 . On average, it is half
of the above.

Any algorithm that sorts by exchanging adjacent elements requires Ω(n2) time on average. The average
number of inversions is initially Ω(n2), and since each swap removes only one inversion, Ω(n2) swaps are
required.

CHAPTER 8. SORTING 35

8.4 Selection Sort

8.4.1 Operation

Selection sort is also called Straight Selection or Push-Down Sort. A selection sort is one in which
successive elements are selected in order and placed into their proper sorted positions. The elements of
the input may have to be preprocessed to make the ordered selection possible.

At the first stage, one scans the list to find the entry that comes last in the order. This entry is then
interchanged with the entry in the last position. By omitting the last entry, we can repeat the process
on the shorter list.

Original 34 8 64 51 32 21 Positions Moved

After p = 1 34 8 64 51 32 21 1

After p = 2 8 34 64 51 32 21 4

After p = 3 8 21 64 51 32 34 2

After p = 4 8 21 32 51 64 34 2

After p = 5 8 21 32 34 64 51 1

After p = 6 8 21 32 34 51 64 0

Here, we scan from the first element that comes in the order, which will give us the same sorted list. In
the first scan, 8 is found to be the smallest element, so we swap it with the element in the first position.
Then, 21 is found to be the second smallest element, so it is swapped with the element in the second
position. By doing so recursively, we obtain a sorted list.

8.4.2 Analysis

Here we can do a simple comparison:

Selection Insertion (average)

Assignments of entries 3n+O(1) 0.25n2 +O(n)
Comparisons of keys 0.5n2 +O(n) 0.25n2 +O(n)

The algorithm consists entirely of a selection phase in which the largest of the remaining elements L is
repeatedly placed in its proper position i at the end of the array. To do so, L is interchanged with the
element x[i]. The initial n-element priority queue is reduced by one element after each selection.

The first pass makes n − 1 comparisons, the second pass makes n − 2, and so on. Therefore, the total
number of comparisons is n(n−1)

2 = O(n2).

The number of interchanges is always n − 1 unless a test is added to prevent the interchanging of an
element with itself.

There is little additional storage required except to hold a few temporary variables. The sort may be
categorized as O(n2), although it is faster than bubble sort. There is no improvement if the input file is
completely sorted or unsorted, since the testing proceeds to completion without regard to the makeup
of the file.

CHAPTER 8. SORTING 36

8.5 Shell Sort

8.5.1 Operation

Shell sort is also called Diminishing Increment Sort. Selection sort moves the entries very efficiently, but
there are many redundant comparisons. Also, even in the best case, insertion sort does the minimum
number of comparisons, but it is inefficient in moving entries only one place at a time.

If we modify the comparison method so that it first compares keys far apart, then it could sort the entries
that are far apart. Afterward, the entries closer together would be sorted, and finally, the increment
between keys being compared would be reduced to 1, ensuring that the list is completely in order. This
is what we call shell sort.

One requirement that is intuitively clear is that the elements of the increment sequence should be
relatively prime. This guarantees that successive iterations intermingle subfiles so that the entire file is
indeed almost sorted when the increment equals 1 in the last iteration.

Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95
After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95
After 2-sort 11 12 15 17 28 35 58 41 81 75 94 96 95
After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

At first, we perform sorting with an increment of 4, so elements in positions 1, 6, and 11 are sorted; 2,
7, and 12 are sorted; and 3, 8, and 13 are sorted. By doing so recursively, we obtain a sorted list.

Since the first increment used by Shell sort is large, the individual subfiles are quite small, making the
simple insertion sorts on those subfiles fairly fast. Each sort of a subfile causes the entire file to become
more nearly sorted. Although successive passes of Shell sort use smaller increments and therefore deal
with larger subfiles, those subfiles are almost sorted due to the actions of previous passes. Thus, the
insertion sorts on those subfiles are also quite efficient.

8.5.2 Analysis

If a file is partially sorted using an increment k and is subsequently partially sorted using an increment
j, the file remains partially sorted on the increment k. Hence, subsequent partial sorts do not disturb
the earlier ones.

The analysis of Shell sort is difficult at best. Empirical studies on Shell sort show that when n is large,
the running time is in the range of n1.25 to 1.6n1.25. It has been shown that the order of Shell sort can
be approximated by O(n(log n)2) if an appropriate sequence of increments is used. For other series of
increments, the running time can be proven to be O(n1.25).

Empirical data indicate that the running time is of the form a×nb, where a is between 1.1 and 1.7, and
b is approximately 1.26, or of the form c× n(log n)2 − d× n× log n, where c is approximately 0.3 and d
is between 1.2 and 1.75.

In general, Shell sort is recommended for moderately sized files of several hundred elements.

Knuth recommends choosing increments as follows:

- Define a function h recursively so that h(1) = 1 and h(i+ 1) = 3× h(i) + 1.

- Let x be the smallest integer such that h(x) ≥ n, and set numinc, the number of increments, to x− 2
and incrmnts[i] to h(numinc− i+ 1) for i from 1 to numinc.

CHAPTER 8. SORTING 37

8.6 Heap Sort

Heap sort is similar to an AVL tree. Priority queues can be used to sort in O(n log n) time, which gives
the best big-O running time we have seen so far.

To perform heap sort, we build a max binary heap of n elements. This stage takes O(n) time. We
then perform n delete_max operations. The elements leave the heap, smallest first, in sorted order. By
recording these elements in a second array and then copying the array back, we sort the n elements.
Since each delete_max operation takes O(log n) time, the total running time is O(n log n).

The main problem with this algorithm is that it uses an extra array. Thus, the memory requirement is
doubled. To address this, we use the last cell for storing the array. Since after each delete_max, the
heap shrinks by 1, the cell that was last in the heap can be used to store the element that was just
deleted.

97

53

26 41

59

58 31

97, 53, 59, 26, 41, 58, 31

59

53

26 41

58

31 97

53, 59, 26, 41, 58, 31, 97

58

53

26 41

31

59 97

53, 26, 41, 58, 31, 59, 97

53

41

26 58

31

59 97

53, 26, 41, 31, 58, 59, 97

41

26

53 58

31

59 97

26, 41, 31, 53, 58, 59, 97

31

26

53 58

41

59 97

26, 31, 41, 53, 58, 59, 97

26

31

53 58

41

59 97

26, 31, 41, 53, 58, 59, 97

26

31

53 58

41

59 97

26, 31, 41, 53, 58, 59, 97

Here, we first remove the largest key, which is 97 in this case, and rearrange the heap. Then, we place
97 in the hole left empty due to the deletion. By doing so recursively, we obtain a sorted list.

CHAPTER 8. SORTING 38

8.7 Merge Sort

8.7.1 Operation

Merge sort is an excellent method for external sorting, which is used for problems where the data are
kept on disks or magnetic tapes, rather than in high-speed memory (RAM).
This algorithm is a classic divide-and-
conquer strategy. The problem is divided
into smaller sub-problems and solved re-
cursively. The conquering phase consists
of patching together the solutions to the
sub-problems. Divide-and-conquer is a
very powerful use of recursion that we will
see many times.
Comparisons of keys are done at only one
place in the entire merge sort procedure.
This place is within the main loop of the
merge procedure. After each comparison,
one of the two nodes is sent to the out-
put list. Hence, the number of compar-
isons certainly cannot exceed the number
of nodes being merged.
As shown on the right, we divide the ar-
ray into two halves recursively until it can-
not be further divided. Then, we perform
merge sort recursively. For the first merge
sort, since there is only one element, it is
already sorted. Then, we merge two ele-
ments and sort them in order. By doing
this recursively, we obtain the sorted list.

13 26 1 24 27 2 15 38

13 26 1 24 27 2 15 38

13 26 1 24 27 2 15 38

13 26 1 24 27 2 15 38

13 26 1 24 2 27 15 38

1 13 24 26 2 15 27 38

1 2 13 15 24 26 27 38

Merge Sort

8.7.2 Analysis

It is clear from the tree that the total length of the lists on each level is precisely n, the total number
of entries. In other words, every entry is treated in exactly one merge on each level. Hence, the total
number of comparisons done on each level cannot exceed n. The number of levels, excluding the leaves
for which no merges are done, is ⌈log n⌉, the ceiling of log n. Therefore, the total number of comparisons
of keys done by merge sort on a list of n entries is no more than n log n, rounded up.

Proof.
T (1) = 1

T (n) = 2T (
n

2
) + n

T (n)

n
=

T (n2)
n
2

+ 1

T (n2)
n
2

=
T (n4)

n
4

+ 1

...
T (2)

2
=

T (1)

1
+ 1

T (n)

n
=

T (1)

1
+ log n

T (n) = n log n+ n = O(n log n)

■

CHAPTER 8. SORTING 39

8.8 Quick Sort

8.8.1 Operation

Quicksort is a divide-and-conquer algorithm used for sorting a subarray A[p . . . r]. The array is first
partitioned (rearranged) into two nonempty subarrays A[p . . . q] and A[q+1 . . . r], such that every element
in A[p . . . q] is less than or equal to every element in A[q + 1 . . . r]. The index q is computed as part of
this partitioning procedure.

Then, the two subarrays A[p . . . q] and A[q + 1 . . . r] are sorted recursively using quicksort. Since the
subarrays are sorted in place, no additional work is required to combine them—thus, the entire array
becomes sorted.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 m n

[26 5 37 1 61 11 59 15 48 19] 1 10
[11 5 19 1 15] 26 [59 61 48 37] 1 5
[1 5] 11 [19 15] 26 [59 61 48 37] 1 2
1 5 11 [19 15] 26 [59 61 48 37] 4 5
1 5 11 15 19 26 [59 61 48 37] 7 10
1 5 11 15 19 26 [48 37] 59 [61] 7 8
1 5 11 15 19 26 37 48 59 [61] 10 10
1 5 11 15 19 26 37 48 59 61

In Quicksort, we choose a pivot, where elements to the left of the pivot are smaller, and elements to the
right are larger. As shown above, since we choose the first element as the pivot, we first swap it with
the middle element. Then, we rearrange the array so that all elements smaller than 26 are placed to the
left, and all elements larger than 26 are placed to the right.

8.8.2 Analysis

The number of comparisons of keys that will have been made in the call to partition is n − 1, since
every entry in the list is compared to the pivot, except for the pivot entry itself.

Let us denote by C(n) the average number of comparisons done by Quicksort on a list of length n, and
by C(n, p) the average number of comparisons on a list of length n where the pivot for the first partition
turns out to be the pth smallest element. The remaining work is then C(p−1) and C(n−p) comparisons
for the sublists. So, for n ≥ 2, we have:

C(n, p) = (n− 1) + C(p− 1) + C(n− p)

Assuming every pivot is equally likely, we can average this over p = 1 to n, giving:

C(n) =
1

n

n∑
p=1

[(n− 1) + C(p− 1) + C(n− p)] = (n− 1) +
1

n

n∑
p=1

[C(p− 1) + C(n− p)]

Since p goes from 1 to n, both p− 1 and n− p range from 0 to n− 1. This symmetry gives:

C(n) = (n− 1) +
2

n

n−1∑
k=0

C(k)

The average time is then:

C(n) = (n− 1) +
2

n

n−1∑
k=0

C(k)

For a list of length n− 1, we have:

C(n− 1) = (n− 2) +
2

n− 1

n−2∑
k=0

C(k)

CHAPTER 8. SORTING 40

Multiplying the first expression by n, and the second by n− 1, and subtracting them, we obtain:

nC(n)− (n− 1)C(n− 1) = n(n− 1)− (n− 1)(n− 2) + 2C(n− 1)

which can be rearranged as:

C(n)− 2

n+ 1
=

C(n− 1)− 2

n
+

2

n+ 1

=
C(n− 2)− 2

n− 1
+

2

n+ 1
+

2

n

=
C(n− 3)− 2

n− 2
+

2

n+ 1
+

2

n
+

2

n− 1

=
C(2)− 2

3
+

2

n+ 1
+

2

n
+

2

n− 1
+ · · ·+ 2

4

=
C(1)− 2

2
+

2

n+ 1
+

2

n
+

2

n− 1
+ · · ·+ 2

4
+

2

3

= −1 + 2

(
1

n+ 1
+

1

n
+

1

n− 1
+ · · ·+ 1

4
+

1

3

)
We introduce the harmonic numbers H(n) = 1+ 1

2 + · · ·+ 1
n . Approximating this sum using an integral,

we evaluate: ∫ n+ 1
2

1
2

1

x
dx = log

(
n+

1

2

)
− log

(
1

2

)
≈ log n+ 0.7,

which shows that:
H(n) = log n+O(1).

By substitution into the recurrence for the average number of comparisons in Quicksort, we find:

C(n)− 2

n+ 1
= 2 log n+O(1) =⇒ C(n) = 2n log n+O(n).

Thus, in the average case, Quicksort performs C(n) = 2n log n+O(n) comparisons of keys to sort a list
of n entries.

We can choose any entry we wish as the pivot and swap it with the first entry before beginning the
loop that partitions the list. The first entry is often a poor choice: if the list is already sorted, then the
first key will have no others less than it, and one of the sublists will be empty. Hence, it may be better
to select an entry near the center of the list in the hope that the pivot will partition the keys so that
approximately half fall on each side.

One method we can use is to select three random elements from the list and choose the median of these
three as the pivot. This increases the likelihood that the pivot will divide the list more evenly, ensuring
that neither sublist is empty. By selecting more elements and choosing the median among them, the
quality of the pivot can be further improved, reducing the chance of highly unbalanced partitions.

8.9 Radix Sort

This is also called bucket sort or postman sort.

In some special cases, sorting can be performed in linear time. The idea is to consider the key one
character at a time and to divide the items not into two sublists, but into as many sublists as there are
possible values for the current character. For example, if the keys are alphabetic strings, we divide the
list into 26 sublists at each stage—one for each letter of the alphabet. That is, we set up a table of 26
lists and distribute the items into these lists according to one of the characters in their keys.

The time used by radix sort is proportional to nk, where n is the number of items being sorted, and k
is the number of characters in a key. The time for other sorting methods depends on n but not directly
on the length of the key. For instance, the best time among comparison-based sorts was achieved by
mergesort, which takes n log n+O(n) time.

CHAPTER 8. SORTING 41

The relative performance of the sorting methods therefore depends on the relationship between nk and
n log n. If the keys are long (large k) but there are relatively few of them (small n), then comparison-based
methods such as mergesort will likely outperform radix sort.

However, if k is small and there are many keys (large n), then radix sort can be faster than any of the
comparison-based methods we have studied.

8.10 More on Sorting

When sorting large structures, it is often impractical to store all the information of each record directly
in an array. This is because such records can be large, making data movement expensive and swapping
inefficient.

A practical solution is to let the input array contain pointers to the actual structures rather than the
structures themselves. We can then perform the sort by comparing the keys that the pointers reference
and swapping the pointers when necessary. In this way, all data movement is essentially the same as if
we were sorting integers.

This technique is known as indirect sorting, or sorting by address. It can be applied to most of the
data structures we have described and is especially useful when dealing with large datasets.

When performing sorting, we often care about stability. A sorting function is called stable if, whenever
two items have equal keys, they remain in the same relative order in the output as they were in the input.

Stability is especially important when a list has already been sorted by one key and is now being sorted
by another key. In such cases, preserving the original ordering as much as possible is desirable.

Formally, an algorithm is stable if for all records i and j such that k[i] = k[j], if r[i] precedes r[j] in the
original file, then r[i] also precedes r[j] in the sorted file. That is, a stable sort keeps records with the
same key in the same relative order as before the sort.

For example, consider the input list:

(a, 1), (b, 2), (c, 3), (a, 4), (a, 5), (b, 6), (c, 7)

A stable sort on the first element yields:

(a, 1), (a, 4), (a, 5), (b, 2), (b, 6), (c, 3), (c, 7)

However, if we use an unstable algorithm such as insertion sort (in a naive implementation), we might
get:

(a, 5), (a, 4), (a, 1), (b, 6), (b, 2), (c, 7), (c, 3)

which is not stable.

Remark. By definition, Shell sort is not stable.

CHAPTER 8. SORTING 42

Chapter 9

Graph Algorithm

9.1 Definitions

A graph is an important mathematical structure. A graph G = (V,E) consists of a set of vertices (or
nodes) V and a set of edges E. Each edge is a pair (v, w), where v, w ∈ V . Edges are sometimes referred
to as arcs.

If e = (v, w) is an edge with vertices v and w, then v and w are said to lie on e, and e is said to be
incident with v and w.

If the pairs are unordered, then G is called an undirected graph. If the pairs are ordered, then G is
called a directed graph. The term directed graph is often shortened to digraph, and the unqualified
term graph usually refers to an undirected graph.

Vertex w is said to be adjacent to vertex v if and only if (v, w) ∈ E. In an undirected graph, if (v, w) ∈ E,
then (w, v) ∈ E as well, so v is adjacent to w and w is adjacent to v. Sometimes, an edge has a third
component, known as either a weight or a cost.

A path in a graph is a sequence of vertices w1, w2, . . . , wn such that (wi, wi+1) ∈ E for 1 ≤ i ≤ n − 1.
The length of such a path is the number of edges on the path, which is equal to n− 1.

We allow a path from a vertex to itself. If this path contains no edges, then the path length is 0. If
the graph contains an edge (v, v) from a vertex to itself, then the path v, v is sometimes referred to as a
loop.

A simple path is a path in which all vertices are distinct, except that the first and last vertices may be
the same.

A cycle in a directed graph is a path of length at least 1 such that w1 = wn. This cycle is called *simple*
if the path is simple. For undirected graphs, we require that the edges be distinct. The logic behind this
requirement is that the path u, v, u in an undirected graph should not be considered a cycle, because
(u, v) and (v, u) represent the same edge. However, in a directed graph, these are different edges, so it
makes sense to call this a cycle.

A directed graph is acyclic if it has no cycles. A directed acyclic graph is sometimes referred to by its
abbreviation, DAG.

An undirected graph is connected if there is a path from every vertex to every other vertex. A directed
graph with this property is called strongly connected. If a directed graph is not strongly connected, but
the underlying graph (without direction to the arcs) is connected, then the graph is said to be weakly
connected. A complete graph is a graph in which there is an edge between every pair of vertices.

9.2 Implementation

Consider each airport as a vertex, and two vertices are connected by an edge if there is a nonstop flight
between the airports represented by the vertices. The edge could have a weight, representing the time,

43

distance, or cost of the flight. Such a graph is directed, since it might take longer or cost more to fly in
different directions.

We would like to make sure that the airport system is strongly connected, so that it is always possible
to fly from any airport to any other airport. We might also like to quickly determine the best flight
between any two airports. This could mean the path with the fewest number of edges or could be taken
with respect to one or all of the weight measures.

To implement such a system, we can use a two-dimensional array. This is known as an adjacency
matrix representation. For each edge (u, v), we set a[u][v] = 1, otherwise the entry in the array is 0.
If the edge has a weight associated with it, then we can set a[u][v] equal to the weight and use either a
very large or a very small weight as a sentinel to indicate nonexistent edges.

Then, if we were looking for the cheapest airplane route, we could represent nonexistent flights with
a cost of ∞. If we were somehow looking for the most expensive airplane route, we could use −∞ to
represent nonexistent edges.

The space requirement is Θ(|V |2). This is unacceptable if the graph does not have many edges. An
adjacency matrix is an appropriate representation if the graph is dense, |E| = Θ(|V |2).
However, if the graph is not dense but sparse, a better solution is an adjacency list representation. For
each vertex, we keep a list of all adjacent vertices. The space requirement is then O(|E| + |V |). If the
edges have weights, then this additional information is also stored in the cells.

9.3 Topological Sort

A topological sort is a linear ordering of vertices in a directed acyclic graph (DAG) such that
for every directed edge from vertex u to vertex v, vertex u comes before vertex v in the ordering. A
directed edge (v, w) indicates that course v must be completed before course w may be attempted.

A topological ordering is then a linear sequence of the vertices such that for every directed edge from
vertex u to vertex v, u appears before v in the sequence. In other words, the ordering respects all the
directed dependencies in the graph.

Notice that a topological ordering is not possible with a cyclic graph, since for two vertices v and w on
the cycle, v precedes w and w precedes v. The ordering is not necessarily unique; any valid ordering will
suffice.

To find the topological ordering, we first define the in-degree of a vertex v as the number of incoming
edges (u, v). We compute the in-degrees of all vertices in the graph. Then, we find any vertex with an
in-degree of zero, print this vertex, and remove it along with its outgoing edges from the graph. We then
apply this same strategy to the rest of the graph.

v1 v2

v3 v4 v5

v6 v7

Figure 9.1: Topological Sort

In-degree before dequeue

Vertex 1 2 3 4 5 6 7

v1 0 0 0 0 0 0 0
v2 1 0 0 0 0 0 0
v3 2 1 1 1 0 0 0
v4 3 2 1 0 0 0 0
v5 1 1 0 0 0 0 0
v6 3 3 3 3 2 1 0
v7 2 2 2 1 0 0 0

enqueue v1 v2 v5 v4 v3 v7 v6

dequeue v1 v2 v5 v4 v3 v7 v6

Table 9.1: Topological Sorting

Since it is a simple sequential scan of the in-degree array, each call to it takes O(|V |) time. Since there
are |V | such calls, the running time of the algorithm is O(|V |2).

CHAPTER 9. GRAPH ALGORITHM 44

9.4 Algorithms

Here we introduce some algorithms that are related to graphs.

9.4.1 Shortest Path Algorithm

For the shortest path algorithm, the input is a weighted graph. Associated with each edge (vi, vj) is a
cost ci,j to traverse the arc. The cost of a path v1, v2, · · · , vn is

∑n−1
i=1 ci,i+1. This is referred to as the

weighted path length. The unweighted path length is merely the number of edges on the path, namely
n− 1.

v1 v2

v3 v4 v5

v6 v7

2

1 3 104

5

2 2

8 4 6

1

Figure 9.2: A weighted graph

v1 v2

v3 v4 v5

v6 v7

2

1 −104

2

3

5

6 2

1

6

1

Figure 9.3: A weighted graph

For example, given as input a weighted graph G = (V,E) and a distinguished vertex s, we are asked to
find the shortest weighted path from s to every other vertex in G.

In Figure 9.2, the shortest weighted path from v1 to v6 has a cost of 6 and goes from v1 to v4 to v7 to
v6. The shortest unweighted path between these vertices has a length of 2.

There could also be cases where the cost is negative. For example, in Figure 9.3, the path from v5 to v4
has cost 1, but a shorter path exists by following the loop v5, v4, v2, v5, v4, which has a cost of −5. The
shortest path between v5 and v4 is undefined. This loop is known as a negative-cost cycle. When one is
present in the graph, the shortest paths are not defined.

Currently, there are no algorithms in which finding the path from s to one vertex is significantly faster
(by more than a constant factor) than finding the paths from s to all vertices. The intermediate nodes
in a shortest path must also lie on the shortest paths from s.

If we assume that there are no negative edges, then for the weighted shortest path problem, the running
time of the algorithm will be O(|E| log |V |) when implemented with reasonable data structures.

If the graph has negative edges, we will have a poor time bound of O(|E|·|V |). We will solve the weighted
problem for the special case of acyclic graphs in linear time.

9.4.2 Breadth-First Search

We want to find the unweighted shortest path. Using vertex s, we would like to find the shortest path
from s to all other vertices. There are no weights on the edges, which is a special case of the weighted
shortest-path problem, since we could assign all edges a weight of 1.

We can use breadth-first search (BFS) to search for the shortest path. It operates by processing
vertices in layers. The vertices closest to the start are evaluated first, and the most distant vertices are
evaluated last. This is much the same as a level-order traversal for trees.

For each vertex, we will keep track of three pieces of information. First, we will keep its distance from
s in the entry dv. Initially, all vertices are unreachable except for s, whose path length is 0. The entry
in pv is the bookkeeping variable, which will allow us to print the actual paths. The entry known is set
to 1 after a vertex is processed. Initially, all entries are unknown, including the start vertex. Once it is
known, we have a guarantee that no cheaper path will ever be found, and so processing for that vertex
is essentially complete.

In Figure 9.4, suppose we choose s to be v3. The shortest path from s to v3 is then a path of length
0. Now we can start looking for all vertices that are a distance 1 away from s. These can be found by

CHAPTER 9. GRAPH ALGORITHM 45

looking at the vertices that are adjacent to s. Then we have

v1 v2

v3 v4 v5

v6 v7

Figure 9.4: Unweighted graph

v Known dv pv

v1 0 ∞ 0
v2 0 ∞ 0
v3 0 0 0
v4 0 ∞ 0
v5 0 ∞ 0
v6 0 ∞ 0
v7 0 ∞ 0

Q v3

Initial State

v Known dv pv

v1 0 1 v3
v2 0 ∞ 0
v3 1 0 0
v4 0 ∞ 0
v5 0 ∞ 0
v6 0 1 v3
v7 0 ∞ 0

Q v1, v6

v3 dequeued

v Known dv pv

v1 1 1 v3
v2 0 2 v1
v3 1 0 0
v4 0 2 v1
v5 0 ∞ 0
v6 0 1 v3
v7 0 ∞ 0

Q v6, v2, v4

v1 dequeued

v Known dv pv

v1 1 1 v3
v2 0 2 v1
v3 1 0 0
v4 0 2 v1
v5 0 ∞ 0
v6 1 1 v3
v7 0 ∞ 0

Q v2, v4

v6 dequeued

v Known dv pv

v1 1 1 v3
v2 1 2 v1
v3 1 0 0
v4 0 2 v1
v5 0 3 v2
v6 1 1 v3
v7 0 ∞ 0

Q v4, v5

v2 dequeued

v Known dv pv

v1 1 1 v3
v2 1 2 v1
v3 1 0 0
v4 1 2 v1
v5 0 3 v2
v6 1 1 v3
v7 0 3 v4

Q v5, v7

v4 dequeued

v Known dv pv

v1 1 1 v3
v2 1 2 v1
v3 1 0 0
v4 1 2 v1
v5 1 3 v2
v6 1 1 v3
v7 0 3 v4

Q v7

v5 dequeued

v Known dv pv

v1 1 1 v3
v2 1 2 v1
v3 1 0 0
v4 1 2 v1
v5 1 3 v2
v6 1 1 v3
v7 1 3 v4

Q

v7 dequeued

The running time for this algorithm is O(|V |2), because of the doubly nested for loops.

9.4.3 Dijkstra’s Algorithm

If the graph is weighted, the problem becomes harder. However, we can still use the idea from the
unweighted case.

Again, each vertex is marked as either known or unknown. A tentative distance dv is kept for each
vertex, as before. This distance turns out to be the shortest path length from s to v using only known
vertices as intermediates. As before, we record pv, which is the last vertex to cause a change to dv.

The general method to solve the single-source shortest-path problem is known as Dijkstra’s algorithm.
This is a prime example of a greedy algorithm. Greedy algorithms generally solve a problem in stages
by doing what appears to be the best choice at each stage.

Notice that Dijkstra’s algorithm proceeds in stages. At each stage, Dijkstra’s algorithm selects a vertex
v, which has the smallest dv among all the unknown vertices, and declares that the shortest path from

CHAPTER 9. GRAPH ALGORITHM 46

s to v is known. The remainder of a stage consists of updating the values of dw.

Consider the following example:

v1 v2

v3 v4 v5

v6 v7

2

1 3 104

5

2 2

8 4 6

1

Figure 9.5: A weighted graph

v Known dv pv

v1 0 0 0
v2 0 ∞ 0
v3 0 ∞ 0
v4 0 ∞ 0
v5 0 ∞ 0
v6 0 ∞ 0
v7 0 ∞ 0

Initial State

v Known dv pv

v1 1 0 0
v2 0 2 v1
v3 0 ∞ 0
v4 0 1 v1
v5 0 ∞ 0
v6 0 ∞ 0
v7 0 ∞ 0

After v1

v Known dv pv

v1 1 0 0
v2 0 2 v1
v3 0 3 v4
v4 1 1 v1
v5 0 3 v4
v6 0 9 v4
v7 0 5 v4

After v4

v Known dv pv

v1 1 0 0
v2 1 2 v1
v3 0 3 v4
v4 1 1 v1
v5 0 3 v4
v6 0 9 v4
v7 0 5 v4

After v2

v Known dv pv

v1 1 0 0
v2 1 2 v1
v3 1 3 v4
v4 1 1 v1
v5 1 3 v4
v6 0 8 v3
v7 0 5 v4

After v3 and v5

v Known dv pv

v1 1 0 0
v2 1 2 v1
v3 1 3 v4
v4 1 1 v1
v5 1 3 v4
v6 0 6 v7
v7 1 5 v4

After v7

v Known dv pv

v1 1 0 0
v2 1 2 v1
v3 1 3 v4
v4 1 1 v1
v5 1 3 v4
v6 1 6 v7
v7 1 5 v4

After v6

However, Dijkstra’s algorithm does not work with negative edge costs. A combination of the weighted
and unweighted algorithms will solve the problem, but at the cost of a drastic increase in running time.
The running time is O(|E| · |V |) if adjacency lists are used.

We can improve this algorithm by changing the order in which vertices are declared known, otherwise
known as the vertex selection rule. The new rule is to select vertices in topological order. The algorithm
can be done in one pass, since the selections and updates can take place as the topological sort is being
performed.

The selection rule works because when a vertex v is selected, its distance dv can no longer be lowered.
Since, by the topological ordering rule, it has no incoming edges emanating from unknown nodes, the
running time is O(|E|+ |V |), since the selection takes constant time.

There are several applications, including the downhill skiing problem, modeling of chemical reactions, and
critical path analysis. For critical path analysis, each node represents an activity that must be performed,
along with the time it takes to complete the activity. This graph is thus known as an activity-node graph.

For an activity-node graph, the edges represent precedence relationships. An edge (v, w) means that
activity v must be completed before activity w may begin. This implies that the graph must be acyclic.

If we need to find the shortest paths between all pairs of vertices in the graph, a brute-force method is to
run the appropriate single-source algorithm |V | times. On sparse graphs, it is faster to run |V | Dijkstra’s

CHAPTER 9. GRAPH ALGORITHM 47

algorithms coded with priority queues.

9.5 Maximum-Flow Algorithm

Suppose we are given a directed graph G = (V,E) with edge capacities cv,w. These capacities could
represent the amount of water that can flow through a pipe or the amount of traffic that can flow on a
street between two intersections. We have two vertices: s, which we call the source, and t, which is the
sink. Through any edge (v, w), at most cv,w units of “flow” may pass.

For any vertex v that is neither s nor t, the total flow coming in must equal the total flow going out.
The maximum flow problem is to determine the maximum amount of flow that can pass from s to t.

To solve this problem, we can use a simple maximum-flow algorithm. We have Gf as a flow graph, which
represents the flow that has been attained at any stage in the algorithm. Initially, all edges in Gf have
no flow. Gf should contain a maximum flow when the algorithm terminates.

We also have Gr, the residual graph. Gr tells, for each edge, how much more flow can be added. We
calculate this by subtracting the current flow from the capacity for each edge. An edge in Gr is known
as a residual edge.

At each stage, we find a path in Gr from s to t. This path is known as an augmenting path. The
minimum edge on this path determines the amount of flow that can be added to every edge on the path.
We do this by adjusting Gf and recomputing Gr. When we find no path from s to t in Gr, we terminate.
This algorithm is nondeterministic in that we are free to choose any path from s to t.

Consider the following example:

s

a b

c d

t

3 2

1

3
4

2

2 3

Initial Stage G

s

a b

c d

t

0 0

0

0
0

0

0 0

1 Flow Graph Gf

s

a b

c d

t

3 2

1

3
4

2

2 3

1 Residual Graph Gr

s

a b

c d

t

0 2

0

0
0

2

0 2

2 Flow Graph Gf

s

a b

c d

t

3

1

3
4

2 1

2 Residual Graph Gr

s

a b

c d

t

2 2

0

2
0

2

2 2

3 Flow Graph Gf

s

a b

c d

t

1

1

1
4

1

3 Residual Graph Gr

s

a b

c d

t

3 2

0

2
1

2

2 3

4 Flow Graph Gf

s

a b

c d

t

1

1
3

4 Residual Graph Gr

Starting from the initial stage, we add different units of flow according to the bottleneck. At the end,
there is no more path from s to t, and thus the algorithm terminates.

The resulting flow of 5 happens to be the maximum flow. However, this is not the optimal solution.
Suppose we choose the path s, a, d, t as the initial path. Then, the result of this choice is that there is
no longer any path from s to t in the residual graph.

We can optimize it by allowing the algorithm to change its mind. To do this, for every edge (v, w) with
flow fv,w in the flow graph, we will add an edge in the residual graph (w, v) with capacity fv,w. In effect,
we are allowing the algorithm to undo its decisions by sending flow back in the opposite direction.

Consider the following example follows the same initial stage:

CHAPTER 9. GRAPH ALGORITHM 48

s

a b

c d

t

3 2

1

3
4

2

2 3

Initial Stage G

s

a b

c d

t

0 0

0

0
0

0

0 0

1 Flow Graph Gf

s

a b

c d

t

3 2

1

3
4

2

2 3

1 Residual Graph Gr

s

a b

c d

t

3

3

3

0

0

0 0

0

2 Flow Graph Gf

s

a b

c d

t

3

3 / 4

3

2

1

3 2

2

2 Residual Graph Gr

s

a b

c d

t

3

1

3

2

22

2

0

3 Flow Graph Gf

s

a b

c d

t

2

2
1 / 4

2 / 3

2

3

3

1

3 Residual Graph Gr

As seen from this flow, although we initially choose the path s, a, d, t, in the residual graph, there are
edges in both directions between a and d. Either one more unit of flow can be pushed from a to d, or up
to three units can be pushed back—thus, we can undo flow. Now, the algorithm finds the augmenting
path s, b, d, a, c, t. By pushing two units of flow from d to a, the algorithm removes two units of flow
from the edge (a, d), effectively changing its previous decision.

Notice that if the capacities are all integers and the maximum flow is f , then since each augmenting
path increases the flow value by at least 1, f stages suffice. The total running time is O(f · |E|), since
an augmenting path can be found in O(|E|) time using an unweighted shortest-path algorithm.

Remark. We always choose the augmenting path that allows the largest increase in the flow. Finding
such a path is similar to solving a weighted shortest-path problem.

9.6 Minimum Spanning Tree

Informally, a minimum spanning tree of an undirected graph G is a tree formed from graph edges that
connects all the vertices of G at the lowest total cost. A minimum spanning tree exists if and only if G
is connected.

The minimum spanning tree is unique only when all edge weights are distinct.

Note that the number of edges in a minimum spanning tree is |V | − 1. It is a tree because it is acyclic,
spanning because it covers all the vertices, and minimum because the sum of the edge costs is the lowest
possible.

We can construct a minimum spanning tree using Prim’s algorithm, which grows the tree in successive
stages. At each stage, starting from a root node, we add an edge—and thus an associated vertex—to the
tree. The algorithm selects the edge (u, v) with the smallest cost such that u is in the tree and v is not.

Prim’s algorithm is essentially identical to Dijkstra’s algorithm for shortest paths. For each vertex, we
maintain values dv and pv, as well as an indication of whether it is known or unknown.

Here, dv is the weight of the shortest edge connecting v to any known vertex. The variable pv, as before,
records the last vertex to cause a change in dv. After a vertex v is selected, for each unknown neighbor
w, we update:

dw = min(dw, cw,v)

Consider the following example:

CHAPTER 9. GRAPH ALGORITHM 49

v1 v2

v3 v4 v5

v6 v7

2

1 3 104

5

2 7

8 4 6

1

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

1

v1 v2

v3 v4 v5

v6 v7

2

1

v1 v2

v3 v4 v5

v6 v7

2

1

2

v1 v2

v3 v4 v5

v6 v7

2

1

2

4

v1 v2

v3 v4 v5

v6 v7

2

1

2

4

1

v1 v2

v3 v4 v5

v6 v7

2

1

2

4 6

1

We can also use tables to show the results:

v Known dv pv

v1 0 0 0
v2 0 ∞ 0
v3 0 ∞ 0
v4 0 ∞ 0
v5 0 ∞ 0
v6 0 ∞ 0
v7 0 ∞ 0

Initial Stage

v Known dv pv

v1 1 0 0
v2 0 2 v1
v3 0 4 v1
v4 0 1 v1
v5 0 ∞ 0
v6 0 ∞ 0
v7 0 ∞ 0

After v1

v Known dv pv

v1 1 0 0
v2 0 2 v1
v3 0 2 v4
v4 1 1 v1
v5 0 7 v4
v6 0 8 v4
v7 0 4 v4

After v4

v Known dv pv

v1 1 0 0
v2 1 2 v1
v3 1 2 v4
v4 1 1 v1
v5 0 7 v4
v6 0 5 v3
v7 0 4 v4

After v2 and v3

v Known dv pv

v1 1 0 0
v2 1 2 v1
v3 1 2 v4
v4 1 1 v1
v5 0 6 v7
v6 0 1 v7
v7 1 4 v4

After v7

v Known dv pv

v1 1 0 0
v2 1 2 v1
v3 1 2 v4
v4 1 1 v1
v5 1 6 v7
v6 1 1 v7
v7 1 4 v4

After v6

Be aware that Prim’s algorithm runs on undirected graphs, so when implementing it, remember to insert
every edge into both adjacency lists.

The running time of Prim’s algorithm is O(|V |2) when implemented without heaps, which is optimal for
dense graphs. With a binary heap, the running time improves to O(|E| log |V |), which is more efficient
for sparse graphs.

A second greedy strategy for constructing a minimum spanning tree is to continually select edges in order
of increasing weight, accepting an edge only if it does not form a cycle. This is called the Kruskal’s
Algorithm. This method maintains a forest—a collection of disjoint trees. Adding an edge merges two
trees into one. When the algorithm terminates, the forest has been reduced to a single tree, which is the
minimum spanning tree. Consider the following example:

v1 v2

v3 v4 v5

v6 v7

2

1 3 104

5

2 7

8 4 6

1

v1 v2

v3 v4 v5

v6 v7

v1 v2

v3 v4 v5

v6 v7

1

v1 v2

v3 v4 v5

v6 v7

1

1

CHAPTER 9. GRAPH ALGORITHM 50

v1 v2

v3 v4 v5

v6 v7

2

1

1

v1 v2

v3 v4 v5

v6 v7

2

1

2

1

v1 v2

v3 v4 v5

v6 v7

2

1

2

4

1

v1 v2

v3 v4 v5

v6 v7

2

1

2

4 6

1

This algorithm terminates when enough edges have been accepted to form a spanning tree. It is simple to
decide whether an edge (u, v) should be accepted or rejected. The appropriate data structure for making
this decision is the union-find (or disjoint-set) algorithm. The key invariant is that, at any point in the
process, two vertices belong to the same set if and only if they are connected in the current spanning
forest.

Initially, each vertex is placed in its own set. If u and v are found to be in the same set, the edge (u, v)
is rejected, since adding it would form a cycle. Otherwise, the edge is accepted, and a union operation
is performed on the two sets containing u and v.

The worst-case running time of this algorithm is O(|E| log |E|), dominated by the heap operations re-
quired for edge sorting. Since |E| = O(|V |2), this time complexity simplifies to O(|E| log |V |). In practice,
the algorithm performs significantly faster than this theoretical bound might suggest.

9.7 Depth-First Search

Depth-First Search (DFS) is a generalization of pre-order traversal. Starting at some vertex v, we process
v and then recursively traverse all vertices adjacent to v. If this process is performed on a tree, then all
tree vertices are systematically visited in a total of O(|E|) time.

If we perform this process on an arbitrary graph, we need to be careful to avoid cycles. To do this,
when we visit a vertex v, we mark it as visited to indicate that we have already been there, and then
recursively call depth-first search on all adjacent vertices that are not already marked.

CHAPTER 9. GRAPH ALGORITHM 51

	Introduction
	Overview
	Algorithm
	Study of Data

	Analysis
	Complexity
	Recurrence Relations

	ADT, List, Stack and Queue
	Abstract Data Type (ADT)
	List
	Stack
	Queue

	Trees
	General Tree
	Binary Tree
	Expression Tree
	Binary Search Tree
	AVL Tree
	B-Tree

	More on Tree
	Tries
	B-Tree

	Hashing
	Introduction
	Hash Function
	Collision Resolution

	Heaps
	Introduction
	Binary Heaps
	Operations

	Sorting
	Introduction
	Bubble Sort
	Insertion Sort
	Selection Sort
	Shell Sort
	Heap Sort
	Merge Sort
	Quick Sort
	Radix Sort
	More on Sorting

	Graph Algorithm
	Definitions
	Implementation
	Topological Sort
	Algorithms
	Maximum-Flow Algorithm
	Minimum Spanning Tree
	Depth-First Search

